福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田のわかった数学〜高校3年生理系102〜大小比較(2)

単元:
#微分とその応用#微分法#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 大小比較(2)
(1)$x \gt 0$のとき$\log(1+\frac{1}{x})と\frac{1}{x+1}$の大小を比較せよ。
(2)$(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}$の大小を比較せよ。
この動画を見る
数学$\textrm{III}$ 大小比較(2)
(1)$x \gt 0$のとき$\log(1+\frac{1}{x})と\frac{1}{x+1}$の大小を比較せよ。
(2)$(1+\frac{2001}{2002})^{\frac{2002}{2001}}と(1+\frac{2002}{2001})^{\frac{2001}{2002}}$の大小を比較せよ。
福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(23) 重要な変形(1)
$\triangle ABC$において
$\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C$
を証明せよ。
この動画を見る
数学$\textrm{II}$ 三角関数(23) 重要な変形(1)
$\triangle ABC$において
$\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C$
を証明せよ。
福田のわかった数学〜高校1年生084〜確率(4)さいころの目の最大と最小の確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(4) さいころの目(2)さいころをn回投げて出た目の最大値が5
で最小値が3である確率を求めよ。ただし、$n \geqq 2$とする。
この動画を見る
数学$\textrm{A}$ 確率(4) さいころの目(2)さいころをn回投げて出た目の最大値が5
で最小値が3である確率を求めよ。ただし、$n \geqq 2$とする。
福田のわかった数学〜高校3年生理系101〜大小比較(1)

単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$textrm{III}$大小比較(1)$999^{1000}$と$1000^{999}$
の大小を比較せよ。
この動画を見る
数学$textrm{III}$大小比較(1)$999^{1000}$と$1000^{999}$
の大小を比較せよ。
福田のわかった数学〜高校2年生083〜三角関数(23)18°系の三角比(3)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$三角関数(22) 18°系の三角比(3)
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式f(x)を求めよ。
(2)$\alpha=18°$のとき次の等式を示せ。
$\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}$
この動画を見る
数学$\textrm{II}$三角関数(22) 18°系の三角比(3)
(1)$\cos5\theta=f(\cos\theta)$を満たす多項式f(x)を求めよ。
(2)$\alpha=18°$のとき次の等式を示せ。
$\cos\alpha\cos3\alpha\cos7\alpha\cos9\alpha=\frac{5}{16}$
福田のわかった数学〜高校1年生083〜確率(3)さいころの目の積の確率

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$確率(3)
さいころの目(1)
さいころをn回投げて出た目の積が6の倍数となる
確率を求めよ。ただし、nは2以上の自然数とする。
この動画を見る
数学$\textrm{A}$確率(3)
さいころの目(1)
さいころをn回投げて出た目の積が6の倍数となる
確率を求めよ。ただし、nは2以上の自然数とする。
福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(7)
$e^a(b-a) \lt e^b-e^a \lt e^b(b-a)$
(ただし、$a \lt b$)
この動画を見る
数学$\textrm{III}$ 不等式の証明(7)
$e^a(b-a) \lt e^b-e^a \lt e^b(b-a)$
(ただし、$a \lt b$)
福田のわかった数学〜高校2年生082〜三角関数(21)18°系の三角比(2)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(21) 18°系の三角比(2)
$0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\theta$のとき
(1)$\theta$を求めよ。
(2)$\cos\theta$を求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(21) 18°系の三角比(2)
$0 \lt \theta \lt \frac{\pi}{2}, \cos2\theta=\cos3\theta$のとき
(1)$\theta$を求めよ。
(2)$\cos\theta$を求めよ。
福田のわかった数学〜高校1年生082〜確率(2)くじ引き(2)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$確率(2) くじ引き(2)
10本中1等賞が2本、2等賞が3本入ったくじから
5人が順に1本ずつ引いていく。(元に戻さない)
4人目が1等賞、5人目が2等賞に当たる確率を
求めよ。
この動画を見る
数学$\textrm{A}$確率(2) くじ引き(2)
10本中1等賞が2本、2等賞が3本入ったくじから
5人が順に1本ずつ引いていく。(元に戻さない)
4人目が1等賞、5人目が2等賞に当たる確率を
求めよ。
福田のわかった数学〜高校3年生理系099〜不等式の証明(6)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(6)
$0 \lt a \lt b \lt \frac{\pi}{2}$のとき、
$\frac{a}{b} \lt \frac{\sin a}{\sin b}$が成り立つことを証明せよ。
この動画を見る
数学$\textrm{III}$ 不等式の証明(6)
$0 \lt a \lt b \lt \frac{\pi}{2}$のとき、
$\frac{a}{b} \lt \frac{\sin a}{\sin b}$が成り立つことを証明せよ。
福田のわかった数学〜高校2年生081〜三角関数(20)18°系の三角比(1)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(20) 18°系の三角比(1)
$\sin\frac{\pi}{10}$の値を求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(20) 18°系の三角比(1)
$\sin\frac{\pi}{10}$の値を求めよ。
福田のわかった数学〜高校1年生081〜確率(1)くじ引き(1)

単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(1) くじ引き(1)
10本中3本当たりのくじから
(1)同時に3本のくじを引いたとき、1本だけ当たる確率を求めよ。
(2)A,B,Cの3人が順に1本ずつ引いたとき(元に戻さない)、
1人だけが当たる確率を求めよ。
この動画を見る
数学$\textrm{A}$ 確率(1) くじ引き(1)
10本中3本当たりのくじから
(1)同時に3本のくじを引いたとき、1本だけ当たる確率を求めよ。
(2)A,B,Cの3人が順に1本ずつ引いたとき(元に戻さない)、
1人だけが当たる確率を求めよ。
福田のわかった数学〜高校3年生理系098〜不等式の証明(5)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(5)
$b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)$を証明せよ。
この動画を見る
数学$\textrm{III}$ 不等式の証明(5)
$b(\log a-\log b) \leqq a-b (a \gt 0, b \gt 0)$を証明せよ。
福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(19) なす角(3)
2点A(0,2), B(0,8)がある。点P(a,0) $(a \gt 0)$について$\angle APB$が最大となるaは?
この動画を見る
数学$\textrm{II}$ 三角関数(19) なす角(3)
2点A(0,2), B(0,8)がある。点P(a,0) $(a \gt 0)$について$\angle APB$が最大となるaは?
福田のわかった数学〜高校1年生080〜場合の数(19)道順(5)

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(17) 道順(5)
図(※動画参照)のように立方体ABCD-EFGHの各面が3×3の正方形となるような
碁盤の目状に区切られた図形がある。点Aから点Gまで辺上を通って最短経路で行く
方法は何通りあるか。
この動画を見る
数学$\textrm{I}$ 場合の数(17) 道順(5)
図(※動画参照)のように立方体ABCD-EFGHの各面が3×3の正方形となるような
碁盤の目状に区切られた図形がある。点Aから点Gまで辺上を通って最短経路で行く
方法は何通りあるか。
福田のわかった数学〜高校3年生理系097〜不等式の証明(4)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
この動画を見る
数学$\textrm{III}$ 不等式の証明(4)
$(x+2)\log(x+1) \geqq 2x (x \geqq 0)$を証明せよ。
福田のわかった数学〜高校2年生079〜三角関数(18)2直線のなす角(2)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(18) なす角(2)
$y=3x+1$と$\frac{\pi}{6}$の角をなし、原点を通る直線の方程式を求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(18) なす角(2)
$y=3x+1$と$\frac{\pi}{6}$の角をなし、原点を通る直線の方程式を求めよ。
福田のわかった数学〜高校1年生079〜場合の数(18)連続しない自然数の選び方

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(18) 連続しない整数
$1,2,3,\ldots,19,20$の20個の数字から、どの2つも連続しないような8個の数字を
選ぶ方法は何通りあるか。
この動画を見る
数学$\textrm{I}$ 場合の数(18) 連続しない整数
$1,2,3,\ldots,19,20$の20個の数字から、どの2つも連続しないような8個の数字を
選ぶ方法は何通りあるか。
福田のわかった数学〜高校3年生理系096〜不等式の証明(3)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(3)
$\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)$を証明せよ。
この動画を見る
数学$\textrm{III}$ 不等式の証明(3)
$\sqrt{ab} \lt \frac{b-a}{\log b-\log a} \lt \frac{a+b}{2} (0 \lt a \lt b)$を証明せよ。
福田のわかった数学〜高校2年生078〜三角関数(17)2直線のなす角(1)

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(17) なす角(1)
2直線$y=3x-1, y=-2x+4$
のなす角$\theta(0 \lt \theta \lt \frac{\pi}{2})$を求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(17) なす角(1)
2直線$y=3x-1, y=-2x+4$
のなす角$\theta(0 \lt \theta \lt \frac{\pi}{2})$を求めよ。
福田のわかった数学〜高校1年生078〜場合の数(17)道順(4)

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(17) 道順(4)
赤玉6個、白玉6個が入った袋から、1個ずつ玉を取り出す。
(取り出した玉は元に戻さない)全部の玉を取り出すとき、
常に取り出した赤玉の個数が取り出した白玉の個数を下回らないような
取り出し方は何通りあるか。同じ色の玉には区別がないものとする。
この動画を見る
数学$\textrm{I}$ 場合の数(17) 道順(4)
赤玉6個、白玉6個が入った袋から、1個ずつ玉を取り出す。
(取り出した玉は元に戻さない)全部の玉を取り出すとき、
常に取り出した赤玉の個数が取り出した白玉の個数を下回らないような
取り出し方は何通りあるか。同じ色の玉には区別がないものとする。
福田のわかった数学〜高校3年生理系095〜不等式の証明(2)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(2)
$x\log x \geqq (x-1)\log(x+1) (x \geqq 1)$を証明せよ。
この動画を見る
数学$\textrm{III}$ 不等式の証明(2)
$x\log x \geqq (x-1)\log(x+1) (x \geqq 1)$を証明せよ。
福田のわかった数学〜高校2年生077〜三角関数(16)三角関数の最大最小

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(16) 最大最小(6)
$y=\frac{\sin x+2}{\cos x+1} (0 \leqq x \leqq \frac{2\pi}{3})$の最大値、最小値を求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(16) 最大最小(6)
$y=\frac{\sin x+2}{\cos x+1} (0 \leqq x \leqq \frac{2\pi}{3})$の最大値、最小値を求めよ。
福田のわかった数学〜高校1年生077〜場合の数(16)道順(3)

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(16) 道順(3)
AからBまでの最短経路は何通りあるか。(※図は動画参照)
この動画を見る
数学$\textrm{I}$ 場合の数(16) 道順(3)
AからBまでの最短経路は何通りあるか。(※図は動画参照)
福田のわかった数学〜高校3年生理系094〜不等式の証明(1)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(1)
$\cos x \lt 1-\frac{x^2}{2}+\frac{x^4}{24} (x \gt 0)$を証明せよ。
この動画を見る
数学$\textrm{III}$ 不等式の証明(1)
$\cos x \lt 1-\frac{x^2}{2}+\frac{x^4}{24} (x \gt 0)$を証明せよ。
福田のわかった数学〜高校2年生076〜三角関数(15)三角関数の最大最小

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(15) 最大最小(5)
$y=4\sin^2x+3\sin x\cos x+\cos^2x (0 \leqq x \lt 2\pi)$の最大値、最小値と
そのときのxの値を求めよ。
福田のわかった数学〜高校1年生076〜場合の数(15)道順(2)

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(15) 道順(2)
AからBへの最短経路のうち2点C,Dを通らない経路は何通りあるか。
(※図は動画参照)
この動画を見る
数学$\textrm{I}$ 場合の数(15) 道順(2)
AからBへの最短経路のうち2点C,Dを通らない経路は何通りあるか。
(※図は動画参照)
福田のわかった数学〜高校3年生理系093〜グラフを描こう(15)対数関数、凹凸、漸近線

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(15)
$y=x^3(\log x-\frac{4}{3})$のグラフを描け。凹凸、漸近線も調べよ。
この動画を見る
数学$\textrm{III}$ グラフを描こう(15)
$y=x^3(\log x-\frac{4}{3})$のグラフを描け。凹凸、漸近線も調べよ。
福田のわかった数学〜高校2年生075〜三角関数(14)三角関数の最大最小

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(14) 最大最小(4)
$y=\cos^2x+\sqrt3\sin x\cos x-\sin x-\sqrt3\cos x (0 \leqq x \leqq \pi)$
の最大値、最小値とそのときのxの値を求めよ。
この動画を見る
数学$\textrm{II}$ 三角関数(14) 最大最小(4)
$y=\cos^2x+\sqrt3\sin x\cos x-\sin x-\sqrt3\cos x (0 \leqq x \leqq \pi)$
の最大値、最小値とそのときのxの値を求めよ。
福田のわかった数学〜高校1年生075〜場合の数(14)道順(1)

単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(14) 道順(1)
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ
到達する最短経路は何通りあるか。
この動画を見る
数学$\textrm{I}$ 場合の数(14) 道順(1)
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ
到達する最短経路は何通りあるか。