ますただ
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
大学入試問題#25 岩手大学(2020) 複素数
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
絶対値が1で偏角が$\displaystyle \frac{\pi}{5}$の複素数を$z$とする。
(1)$1+z+z^2+・・・+z^9$を求めよ。
(2)$z^4-z^3+z^2-z$を求めよ。
出典:2020年岩手大学 入試問題
この動画を見る
絶対値が1で偏角が$\displaystyle \frac{\pi}{5}$の複素数を$z$とする。
(1)$1+z+z^2+・・・+z^9$を求めよ。
(2)$z^4-z^3+z^2-z$を求めよ。
出典:2020年岩手大学 入試問題
大学入試問題#24 秋田大学(2020) 定積分
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。
出典:2020年秋田大学 入試問題
この動画を見る
$\displaystyle \int_{e}^{e^2}\displaystyle \frac{log(log\ x)}{x\ log\ x}\ dx$を計算せよ。
出典:2020年秋田大学 入試問題
【誘導あり 概要欄】大学入試問題#24 富山大学(2020) 微積の応用
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
(1)
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$
$x\ \cos\theta-\sin\theta=0$のとき
$\sin\theta,\cos\theta$を$x$で表せ。
(2)
$x \gt 0$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x\ \cos\ t-\sin\ t|dt$の最小値を求めよ。
出典:2020年富山大学 入試問題
この動画を見る
(1)
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$
$x\ \cos\theta-\sin\theta=0$のとき
$\sin\theta,\cos\theta$を$x$で表せ。
(2)
$x \gt 0$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x\ \cos\ t-\sin\ t|dt$の最小値を求めよ。
出典:2020年富山大学 入試問題
大学入試問題#23 東北大学(2020) 三角関数
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$y=\sin\ x$の2つの接線が直交するとき
その交点の$y$座標の値をすべて求めよ。
出典:2020年東北大学 入試問題
この動画を見る
$y=\sin\ x$の2つの接線が直交するとき
その交点の$y$座標の値をすべて求めよ。
出典:2020年東北大学 入試問題
【問題の詳細は概要欄,誘導あり】大学入試問題#22 千葉大学(2020) 数列
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$a_1=3,a_2=2$
$n \geqq 2$のとき
$a_{n+1}=a_n^2+a_n-1$
(1)
$n \geqq 2$のとき
$a_{n+1}=(a_1・a_2・・・a_n)-1$を示せ
(2)
$\displaystyle \sum_{i=1}^n(a_1)^2=a_1a_2・・・a_n+100$をみたす自然数$n$を求めよ。
出典:2020年千葉大学 入試問題
この動画を見る
$a_1=3,a_2=2$
$n \geqq 2$のとき
$a_{n+1}=a_n^2+a_n-1$
(1)
$n \geqq 2$のとき
$a_{n+1}=(a_1・a_2・・・a_n)-1$を示せ
(2)
$\displaystyle \sum_{i=1}^n(a_1)^2=a_1a_2・・・a_n+100$をみたす自然数$n$を求めよ。
出典:2020年千葉大学 入試問題
大学入試問題#21 千葉大学(2020) tanの定積分
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
(1)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^n\theta\ d\theta+\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^{n+2}\theta\ d\theta$を$n$の式で表せ
(2)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^7\theta\ d\ \theta$を求めよ。
出典:2020年千葉大学 入試問題
この動画を見る
(1)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^n\theta\ d\theta+\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^{n+2}\theta\ d\theta$を$n$の式で表せ
(2)
$\displaystyle \int_{0}^{\frac{\pi}{3}}\tan^7\theta\ d\ \theta$を求めよ。
出典:2020年千葉大学 入試問題
大学入試問題#20 群馬大医学部(2020) 対数,領域
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$0 \lt x \lt 1,0 \lt y \lt 1$
$(log_xy)^2+log_y\displaystyle \frac{x^3}{y^4} \leqq 0$の表す領域を$xy$平面上に図示せよ。
出典:2020年群馬大学医学部 入試問題
この動画を見る
$0 \lt x \lt 1,0 \lt y \lt 1$
$(log_xy)^2+log_y\displaystyle \frac{x^3}{y^4} \leqq 0$の表す領域を$xy$平面上に図示せよ。
出典:2020年群馬大学医学部 入試問題
大学入試問題#19 京都大学(2020) 定積分
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{x}{\cos^2x}\ dx$を計算せよ。
出典:2020年京都大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{x}{\cos^2x}\ dx$を計算せよ。
出典:2020年京都大学 入試問題
大学入試問題#18 東北大学(2020) 数列
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$a_1=1,\ a_2=3$
$a_{n+2}a_n=2a_{n+1}^2$のとき
一般項$a_n$を求めよ。
出典:2020年東北大学 入試問題
この動画を見る
$a_1=1,\ a_2=3$
$a_{n+2}a_n=2a_{n+1}^2$のとき
一般項$a_n$を求めよ。
出典:2020年東北大学 入試問題
大学入試問題#17 埼玉大学(2021) 解と係数の関係
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$x^2-kx+\displaystyle \frac{5}{2}=0$の実数解$\alpha,\beta,(\alpha \lt \beta)$は
$(\alpha-3)^2+(\beta-3)^2=8$をみたす。
$k,\alpha,\beta$の値を求めよ。
出典:2020年埼玉大学 入試問題
この動画を見る
$x^2-kx+\displaystyle \frac{5}{2}=0$の実数解$\alpha,\beta,(\alpha \lt \beta)$は
$(\alpha-3)^2+(\beta-3)^2=8$をみたす。
$k,\alpha,\beta$の値を求めよ。
出典:2020年埼玉大学 入試問題
大学入試問題#16 埼玉大学(2020) 式変形
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
実数$x,y$が$(x-3)^2+(y-3)^2=8$を満たすとき
$x+y,\ xy$のとりうる値の範囲を求めよ。
出典:2020年埼玉大学 入試問題
この動画を見る
実数$x,y$が$(x-3)^2+(y-3)^2=8$を満たすとき
$x+y,\ xy$のとりうる値の範囲を求めよ。
出典:2020年埼玉大学 入試問題
大学入試問題#15 慶應義塾大学(2021) 整数問題
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$a,b,c,d:$正の整数
$a^3=b^2$
$c^3=d^2$
$c-a=9$のとき$a,b,c,d$の値を求めよ。
出典:2021年慶應義塾大学 入試問題
この動画を見る
$a,b,c,d:$正の整数
$a^3=b^2$
$c^3=d^2$
$c-a=9$のとき$a,b,c,d$の値を求めよ。
出典:2021年慶應義塾大学 入試問題
【誘導あり 概要欄】14滋賀県教員採用試験(数学:4番 微分方程式)
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$f'(x):$連続
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g"(x)$
$f(0)=1$をみたすとき
(1)$g'(x)=f(x)-1$を示せ
(2)$f(x),g(x)$を求めよ
この動画を見る
$f'(x):$連続
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g"(x)$
$f(0)=1$をみたすとき
(1)$g'(x)=f(x)-1$を示せ
(2)$f(x),g(x)$を求めよ
大学入試問題#14 津田塾大学(2021) 微積の応用
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{\pi}{x}$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}\sin|x-t|dt$の最小値、最大値を求めよ。
出典:2021年津田塾大学 入試問題
この動画を見る
$0 \leqq x \leqq \displaystyle \frac{\pi}{x}$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}\sin|x-t|dt$の最小値、最大値を求めよ。
出典:2021年津田塾大学 入試問題
大学入試問題#13 自治医科大学(2021) 対数と整数問題
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$x,y:$自然数
$1+log_x(y-2)=4\ log_{x^2}2+3\ log_{x^3}(y+6)$が成り立つとき$|x-y|$の最小値を求めよ。
出典:2021年自治医科大学 入試問題
この動画を見る
$x,y:$自然数
$1+log_x(y-2)=4\ log_{x^2}2+3\ log_{x^3}(y+6)$が成り立つとき$|x-y|$の最小値を求めよ。
出典:2021年自治医科大学 入試問題
大学入試問題#12 獨協大学(2021) 数列
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$s_n=2a_n-3n$
一般項$a_n$を求めよ。
出典:2021年獨協大学 入試問題
この動画を見る
$s_n=2a_n-3n$
一般項$a_n$を求めよ。
出典:2021年獨協大学 入試問題
大学入試問題#11 北里大学(医) 2021 整数問題
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。
(2)
$x=y=1$のとき$$
(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。
出典:2021年北里大学医学部 入試問題
この動画を見る
$x,y,z,w:$自然数
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{2z}+\displaystyle \frac{1}{3w}=\displaystyle \frac{7}{3}$
・・・*
(1)
$x$のとり得る値を求めよ。
(2)
$x=y=1$のとき$$
(3)
$xyzw$の値を最大にする組$(x,y,z,w)$を求めよ。
出典:2021年北里大学医学部 入試問題
03愛知県教員採用試験(数学:9番 整数問題)
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$5x+3y=521$をみたす自然数$x,y$の組の個数を求めよ。
この動画を見る
$5x+3y=521$をみたす自然数$x,y$の組の個数を求めよ。
01愛知県教員採用試験(数学:14番 複素数)
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$w,z:$複素数
$|w|=1$のとき$w=\bar{ (z-3)i }$をみたす$z$の軌跡を求めよ。
この動画を見る
$w,z:$複素数
$|w|=1$のとき$w=\bar{ (z-3)i }$をみたす$z$の軌跡を求めよ。
大学入試問題#10 慶応義塾大学(2021) 解と係数の関係の応用
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$0 \lt m:$整数
$x^3-20x^2+mx-2(m-1)=0$は3つの異なる正の整数解をもつとき、
$m$と3つの解を求めよ。
出典:2021年慶應義塾大学 入試問題
この動画を見る
$0 \lt m:$整数
$x^3-20x^2+mx-2(m-1)=0$は3つの異なる正の整数解をもつとき、
$m$と3つの解を求めよ。
出典:2021年慶應義塾大学 入試問題
大学入試問題#9 獨協大学(2021) 微分法の応用
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$a:$定数
$\displaystyle \int_{0}^{x}f(t)dt+\displaystyle \int_{0}^{1}x^2f(t)dt=x^2+3x+a$を満たすとき
$f(x)$を求めよ。
出典:2021年獨協大学 入試問題
この動画を見る
$a:$定数
$\displaystyle \int_{0}^{x}f(t)dt+\displaystyle \int_{0}^{1}x^2f(t)dt=x^2+3x+a$を満たすとき
$f(x)$を求めよ。
出典:2021年獨協大学 入試問題
11愛知県教員採用試験(数学:3番 整数問題)
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$l,k:$自然数
$p:$素数
$l^2-k^2=21$
$p=l+k$を満たす$p,l,k$を求めよ。
この動画を見る
$l,k:$自然数
$p:$素数
$l^2-k^2=21$
$p=l+k$を満たす$p,l,k$を求めよ。
06滋賀県教員採用試験(数学:2番 三角関数)
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$0 \leqq x \leqq \pi,\ 0 \lt a$
$y=\sin2x+a(\sin\ x+\cos\ x)$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
この動画を見る
$0 \leqq x \leqq \pi,\ 0 \lt a$
$y=\sin2x+a(\sin\ x+\cos\ x)$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
大学入試問題#8 東京理科大学(2021) 定積分
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
次の定積分を計算せよ。
$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$
$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$
$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$
出典:2021年東京理科大学 入試問題
この動画を見る
次の定積分を計算せよ。
$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$
$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$
$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$
出典:2021年東京理科大学 入試問題
17滋賀県教員採用試験(数学:4番 実数解の個数)
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$k:$定数
方程式$k(x-1)^2=|x|$の異なる実数解の個数を調べよ。
出典:滋賀県教員採用試験
この動画を見る
$k:$定数
方程式$k(x-1)^2=|x|$の異なる実数解の個数を調べよ。
出典:滋賀県教員採用試験
大学入試問題#7 成城大学(2021) 対数の方程式
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$x \gt y \gt 0$
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^{\frac{x}{y}+\frac{y}{x}}=32・・・① \\
log_3(x-y)+log_3(x+y)=1・・・②
\end{array}
\right.
\end{eqnarray}$ を解け。
出典:2021年成城大学 入試問題
この動画を見る
$x \gt y \gt 0$
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^{\frac{x}{y}+\frac{y}{x}}=32・・・① \\
log_3(x-y)+log_3(x+y)=1・・・②
\end{array}
\right.
\end{eqnarray}$ を解け。
出典:2021年成城大学 入試問題
14滋賀県教員採用試験(数学:2番 2変数関数の最大値、最小値)
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$x^2+y^2=1$をみたすとき
$5x^2+2xy+3y^2$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
この動画を見る
$x^2+y^2=1$をみたすとき
$5x^2+2xy+3y^2$の最大値、最小値を求めよ。
出典:滋賀県教員採用試験
大学入試問題#6 学習院大学(2021) 対数
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$log_2(log_2(x-2)-log_{\frac{1}{2}}(x-4))=2$を解け。
出典:2021年学習院大学 入試問題
この動画を見る
$log_2(log_2(x-2)-log_{\frac{1}{2}}(x-4))=2$を解け。
出典:2021年学習院大学 入試問題
大学入試問題#5 早稲田大学(2021) 三角関数
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{2+\sin\alpha}+\displaystyle \frac{1}{2+\sin2\beta}=2$のとき
$|\alpha+\beta-8\pi|$の最小値を求めよ。
出典:2021年早稲田大学 入試問題
この動画を見る
$\displaystyle \frac{1}{2+\sin\alpha}+\displaystyle \frac{1}{2+\sin2\beta}=2$のとき
$|\alpha+\beta-8\pi|$の最小値を求めよ。
出典:2021年早稲田大学 入試問題
大学入試問題#4 慶應義塾大学(2021) 軌跡
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師:
ますただ
問題文全文(内容文):
放物線$y=x^2$上を動く2点$A,B$と原点$O$を線分で結んだ
$\triangle OAB$において
$\angle AOB=90^{ \circ }$とする。
このとき、$\triangle OAB$の重心$G$の軌跡を求めよ。
出典:2021年慶應義塾大学 入試問題
この動画を見る
放物線$y=x^2$上を動く2点$A,B$と原点$O$を線分で結んだ
$\triangle OAB$において
$\angle AOB=90^{ \circ }$とする。
このとき、$\triangle OAB$の重心$G$の軌跡を求めよ。
出典:2021年慶應義塾大学 入試問題