鈴木貫太郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。
広島大学 整数問題 高校数学 大学入試 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。
(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
この動画を見る
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。
(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
宇都宮大学 漸化式 高校数学 大学入試 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大学入試解答速報
指導講師:
鈴木貫太郎
問題文全文(内容文):
宇都宮大学過去問題
$a_1=1 \quad$初項~第n項までの和を$S_n$
$a_{n+1}=9a_n -4S_n$
(1)一般項$a_n$を求めよ。
(2)$S_n$をnで表せ。
この動画を見る
宇都宮大学過去問題
$a_1=1 \quad$初項~第n項までの和を$S_n$
$a_{n+1}=9a_n -4S_n$
(1)一般項$a_n$を求めよ。
(2)$S_n$をnで表せ。
e^πとπ^e どっちがでかい?

単元:
#数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$e^π$と$π^e$どっちがでかい?
この動画を見る
$e^π$と$π^e$どっちがでかい?
弘前大 三角関数 正十角形の面積 高校数学 大学入試 Japanese university entrance exam questions

単元:
#数Ⅱ#複素数と方程式#複素数平面#三角関数#複素数#三角関数とグラフ#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。
(2)半径1の円に内接する正十角形の面積を求めよ。
この動画を見る
弘前大学過去問題
(1)$sin5θ=16sin^5θ-20sin^3θ+5sinθ$を示せ。
(2)半径1の円に内接する正十角形の面積を求めよ。
一橋大学 三次関数の最大値 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2007一橋大学過去問題
aを定数とし、$f(x)=x^3-3ax^2+a$とする。
$x \leqq 2$の範囲でf(x)の最大値が105となるようなaをすべて求めよ。
この動画を見る
2007一橋大学過去問題
aを定数とし、$f(x)=x^3-3ax^2+a$とする。
$x \leqq 2$の範囲でf(x)の最大値が105となるようなaをすべて求めよ。
千葉大 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
30!について
(1)$2^k$で割ったとき商が整数となる最大のkの値
(2)末尾に0がいくつ並ぶか
(3)1の位から左に見ていき最初にあらわれる0以外の数は何か
この動画を見る
千葉大学過去問題
30!について
(1)$2^k$で割ったとき商が整数となる最大のkの値
(2)末尾に0がいくつ並ぶか
(3)1の位から左に見ていき最初にあらわれる0以外の数は何か
旭川医大(N進法)弘前大(医)数列 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#旭川医科大学#数学(高校生)#弘前大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題
$0.2\dot{2}\dot{1}_{(3)}$
十進法の分数に
弘前大学過去問題
$x_n=2^{n-1}n$
初項~n項の和
この動画を見る
旭川医科大学過去問題
$0.2\dot{2}\dot{1}_{(3)}$
十進法の分数に
弘前大学過去問題
$x_n=2^{n-1}n$
初項~n項の和
東京海洋大学 三角関数 最大最小 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#三角関数とグラフ#接線と増減表・最大値・最小値#東京海洋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
この動画を見る
東京海洋大学過去問題
$y=2\cos^3x+2\sin^3x+3 \cos x \sin x-3$
$\cos x-3 \sin x$
$0 \leqq x \leqq 2π$のときのyの最大値、最小値およびその時のxの値
東大 場合の数 高校数学 Japanese university entrance exam questions Tokyo University

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#場合の数#場合の数#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボ ールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ 相異なる入れ方の総数を求めたい。
(1) 1からnまで異なる番号のついたこのボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(2)互いに区別のつかないn個のボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つ の箱に入れる場合、その入れ方は全部で何通りあるか。
この動画を見る
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボ ールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ 相異なる入れ方の総数を求めたい。
(1) 1からnまで異なる番号のついたこのボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(2)互いに区別のつかないn個のボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。
(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つ の箱に入れる場合、その入れ方は全部で何通りあるか。
千葉大学 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
この動画を見る
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
東北大 三次方程式 相異三実根 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
$2x^3-3(a+b)x^2+6abx-2a^2b=0$が相異3実根をもつとき
(a,b)の範囲を図示せよ。
この動画を見る
東北大学過去問題
$2x^3-3(a+b)x^2+6abx-2a^2b=0$が相異3実根をもつとき
(a,b)の範囲を図示せよ。
京都大 図形(基礎)高校数学 Japanese university entrance exam questions Kyoto University

単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#京都大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
1辺の長さが1の正四面体OABCのBC上に点PをとりBPの長さをxとする
(1)OAPをxで表せ。
(2)OAPの最小値
*図は動画内参照
この動画を見る
京都大学過去問題
1辺の長さが1の正四面体OABCのBC上に点PをとりBPの長さをxとする
(1)OAPをxで表せ。
(2)OAPの最小値
*図は動画内参照
弘前大 微分 最小値 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$f(x) = x^3-(3a-2)x^2-8ax \quad (a>0)$
$-3\leqq x \leqq 3a$における最小値
この動画を見る
弘前大学過去問題
$f(x) = x^3-(3a-2)x^2-8ax \quad (a>0)$
$-3\leqq x \leqq 3a$における最小値
和歌山大 三項間漸化式 半角の公式 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#三角関数#三角関数とグラフ#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#和歌山大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
この動画を見る
和歌山大学過去問題
$a_1=2\sin^2\frac{θ}{2}$,$a_2=2\cosθ\sin^2\frac{θ}{2}$
$2(cos^2\frac{θ}{2})a_{n+1}=a_{n+2}+(\cosθ)a_n$
$a_n$を$\cosθ$を用いて表せ。
京都大 整数問題 高校数学 Japanese university entrance exam questions Kyoto University

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'96京都大学過去問題
m,nは自然数で、m<nを満たすものとする。
$m^n+1,n^m+1$がともに10の倍数となるm,nを1組与えよ。
この動画を見る
'96京都大学過去問題
m,nは自然数で、m<nを満たすものとする。
$m^n+1,n^m+1$がともに10の倍数となるm,nを1組与えよ。
京都大 史上最短の入試問題 tan1°は有理数か 高校数学 Japanese university entrance exam questions Kyoto University

単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
史上最短問題文 tan1°は有理数か?(京大入試)
この動画を見る
史上最短問題文 tan1°は有理数か?(京大入試)
慶應(医)空間 直線&平面の方程式 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#三角関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#慶應義塾大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
この動画を見る
慶応義塾大学過去問題
直線 $l:6-x=\frac{y+5}{2}=2-z$と
平面$α:z+y-z-1=0$
(1)lとαの交点の座標
(2)lを含み平面αに垂直な平面πの方程式
(3)lと、平面αとπの交線のなす角をθ(0°$\leqq$θ$\leqq$90°)
cosθの値
北海道大学 数1 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
$\frac{1}{x}$の小数部分が$\frac{x}{2}$に等しくなるような正の数xをすべて求めよ。
ただし、正の数aの小数部分とは、aを超えない最大の整数nとの差$a-n$のことをいう。
この動画を見る
北海道大学過去問題
$\frac{1}{x}$の小数部分が$\frac{x}{2}$に等しくなるような正の数xをすべて求めよ。
ただし、正の数aの小数部分とは、aを超えない最大の整数nとの差$a-n$のことをいう。
大阪大学 微分 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#大阪大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2005大阪大学過去問題
$f(x)= 2x^3+x^2-3$
$y=mx$
相異3点で交わる実数mの範囲
この動画を見る
2005大阪大学過去問題
$f(x)= 2x^3+x^2-3$
$y=mx$
相異3点で交わる実数mの範囲
弘前大 漸化式 一般項を求めよ 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#数列#漸化式#数学(高校生)#弘前大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$a_1 = 2$
$a_{n+1}= \frac{n+2}{n}a_n+1$
この動画を見る
弘前大学過去問題
$a_1 = 2$
$a_{n+1}= \frac{n+2}{n}a_n+1$
千葉大学、弘前大学 整数問題 メルセンヌ素数 高校数学 Japanese university entrance exam questions

単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)#弘前大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$n^5-n$は30の倍数であることを示せ。
千葉大学過去問題
$2^n-1$が素数ならnは素数であることを示せ。
この動画を見る
弘前大学過去問題
$n^5-n$は30の倍数であることを示せ。
千葉大学過去問題
$2^n-1$が素数ならnは素数であることを示せ。
鳥取大 空間 直線・平面の方程式 高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
鳥取大学過去問題
$l_1:\frac{x-1}{2}=\frac{y-2}{-3}=z-4$
$l_2:\frac{x-2}{a^3}=\frac{y-3}{-b^2}=\frac{z-2}{b-1}$
$l_3:\frac{x-4}{-2a}=\frac{y-2}{b}=\frac{z-1}{a}$
A(1,2,4) B(2,3,2) C(4,2,1)
(1)A,B,Cを通る平面πの方程式
(2)$l_1$がπ上にある
(3)$l_2$,$l_3$がπ上にあるa,bの値
この動画を見る
鳥取大学過去問題
$l_1:\frac{x-1}{2}=\frac{y-2}{-3}=z-4$
$l_2:\frac{x-2}{a^3}=\frac{y-3}{-b^2}=\frac{z-2}{b-1}$
$l_3:\frac{x-4}{-2a}=\frac{y-2}{b}=\frac{z-1}{a}$
A(1,2,4) B(2,3,2) C(4,2,1)
(1)A,B,Cを通る平面πの方程式
(2)$l_1$がπ上にある
(3)$l_2$,$l_3$がπ上にあるa,bの値
横浜市立(医)高校数学 Japanese university entrance exam questions

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^3-x^2-x+k=0 \quad (k>1)$
実根は1個であることを示せ。
(2)(1)の方程式の3根の絶対値はいずれも1より大きいことを示せ。
この動画を見る
横浜市立大学過去問題
(1)$x^3-x^2-x+k=0 \quad (k>1)$
実根は1個であることを示せ。
(2)(1)の方程式の3根の絶対値はいずれも1より大きいことを示せ。
一橋大 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2005一橋大学過去問題
(1)P,2P+1,4P+1がいずれも素数となるようなPをすべて求めよ。
(2)q,2q+1,4q-1,6q-1,8q+1がいずれも素数となるようなqをすべて求めよ。
この動画を見る
2005一橋大学過去問題
(1)P,2P+1,4P+1がいずれも素数となるようなPをすべて求めよ。
(2)q,2q+1,4q-1,6q-1,8q+1がいずれも素数となるようなqをすべて求めよ。
九州大学 三倍角 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
この動画を見る
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
東京海洋大学 漸化式 高校数学 Japanese university entrance exam questions

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013東京海洋大学過去問題
$a_1 = 1 \quad n=1,2,3\cdots$
$a_{n+1} = 27^{n^2-3n-9}a_n$
(1)一般項$a_n$を求めよ
(2)$a_n$が最小となるnの値
この動画を見る
2013東京海洋大学過去問題
$a_1 = 1 \quad n=1,2,3\cdots$
$a_{n+1} = 27^{n^2-3n-9}a_n$
(1)一般項$a_n$を求めよ
(2)$a_n$が最小となるnの値
九州大学 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2014九州大学過去問題
(1)aは自然数$\quad$ $a^2$を3で割った余りは0か1を証明
(2)$a^2+b^2=3c^2$を満たすと仮定するとa,b,cはすべて3で割りきれなければならないことを証明せよ。
(3)$a^2+b^2=3c^2$を満たす自然数a,b,cは存在しないことを証明
この動画を見る
2014九州大学過去問題
(1)aは自然数$\quad$ $a^2$を3で割った余りは0か1を証明
(2)$a^2+b^2=3c^2$を満たすと仮定するとa,b,cはすべて3で割りきれなければならないことを証明せよ。
(3)$a^2+b^2=3c^2$を満たす自然数a,b,cは存在しないことを証明
慶應(医)愛媛大 判別式 整数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$3x^2+y^2+5z^2-2yz-12=0$
これを満たす整数(x,y,z)
慶応義塾大学過去問題
$\{ x^2+2(a+b)x+a^3 \}$ $\{ x^2+(a^2-ab+b^2)x+b^3 \} = 0$
が実根をもつことを証明。
この動画を見る
愛媛大学過去問題
$3x^2+y^2+5z^2-2yz-12=0$
これを満たす整数(x,y,z)
慶応義塾大学過去問題
$\{ x^2+2(a+b)x+a^3 \}$ $\{ x^2+(a^2-ab+b^2)x+b^3 \} = 0$
が実根をもつことを証明。
姪(高1)からの質問

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\frac{x+y}{3}=\frac{y+z}{6}=\frac{z+x}{7} \neq 0$
$\frac{x^3+y^3+z^3}{(x-y)(y-z)(z-x)}$
x,y,z正
$\frac{yz}{x}$=$\frac{zx}{4y}$=$\frac{xy}{9z}$
$\frac{x+y+z}{\sqrt{x^2+y^2+z^2}}$
この動画を見る
$\frac{x+y}{3}=\frac{y+z}{6}=\frac{z+x}{7} \neq 0$
$\frac{x^3+y^3+z^3}{(x-y)(y-z)(z-x)}$
x,y,z正
$\frac{yz}{x}$=$\frac{zx}{4y}$=$\frac{xy}{9z}$
$\frac{x+y+z}{\sqrt{x^2+y^2+z^2}}$
早稲田(政経) 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2014早稲田大学過去問題
x,yは自然数、Pは3以上の素数
(1)$x^2-y^2 = P$が成り立つとき、x,yをPで表せ(答えのみ)
(2)$x^3-y^3 = P$が成り立つとき、Pを6で割った余りは1であることを証明せよ。
この動画を見る
2014早稲田大学過去問題
x,yは自然数、Pは3以上の素数
(1)$x^2-y^2 = P$が成り立つとき、x,yをPで表せ(答えのみ)
(2)$x^3-y^3 = P$が成り立つとき、Pを6で割った余りは1であることを証明せよ。