センター試験・共通テスト関連
7月は共通テストの過去問を何年分解くべきなのか?そして7月は絶対やって欲しいことが。。。
単元:
#センター試験・共通テスト関連#英語(高校生)#共通テスト#共通テスト・センター試験#共通テスト#理科(高校生)#共通テスト
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
7月は共通テストの過去問を何年分解くべきなのか解説します。
この動画を見る
7月は共通テストの過去問を何年分解くべきなのか解説します。
2024年共通テスト徹底解説〜数学ⅡB第5問ベクトル〜福田の入試問題解説
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します
この動画を見る
共通テスト2024の数学ⅡB第5問ベクトルを徹底解説します
2024年共通テスト徹底解説〜数学ⅠA第2問(1)2次関数〜福田の入試問題解説
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)2次関数を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅠA第2問(2)2次関数を徹底解説します
2024共通テスト過去問
2024年共通テスト徹底解説〜数学ⅡB第4問数列〜福田の入試問題解説
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第4問数列を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅡB第4問数列を徹底解説します
2024共通テスト過去問
2024年共通テスト徹底解説〜数学ⅡB第2問微分積分〜福田の入試問題解説
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第2問微分積分を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅡB第2問微分積分を徹底解説します
2024共通テスト過去問
2024年共通テスト徹底解説〜数学ⅡB第1問(2)整式の除法〜福田の入試問題解説
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅡB第1問(2)整数の除法を徹底解説します
2024共通テスト過去問
2024年共通テスト徹底解説〜数学ⅡB第1問(1)対数関数〜福田の入試問題解説
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第1問(1)対数関数を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅡB第1問(1)対数関数を徹底解説します
2024共通テスト過去問
2024年共通テスト徹底解説〜数学ⅠA第2問(2)データの分析〜福田の入試問題解説
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)データの分析を徹底解説します
2024共通テスト過去問
この動画を見る
共通テスト2024の数学ⅠA第2問(2)データの分析を徹底解説します
2024共通テスト過去問
【共通テスト】数学2B2024年レビュー(総評、傾向解説)
2024年共通テスト数学1A講評【予想平均点・傾向と対策】
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
Morite2 English Channel
問題文全文(内容文):
上岡先生が2024年共通テスト数学1Aを講評します。
復習の際の参考にしましょう!
この動画を見る
上岡先生が2024年共通テスト数学1Aを講評します。
復習の際の参考にしましょう!
2024年共通テスト解答速報〜数学ⅠA第3問〜福田の入試問題解説
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
2024共通テスト数学ⅠA第3問解説です
箱の中にカ ー ドが 2 枚以上入っており、それぞれのカ ードにはアルファベットが一文字だけ書かれている。この箱の中からカ ー ドを一枚取り出し、書かれているアルファベットを確認してからもとに戻すという試行をり返し行う。
(1)箱の中にA,Bのカードが 1 枚ずつ全部で 2 枚入っている場合を考える。以下では、2 以上の自然数nに対しn回の試行で A. Bがそろっているとは、n回の試行でA,Bのそれぞれが少なくとも1回は取り出されることを意味する。
(i)2回の試行でA,Bがそろっている確率は$\dfrac{ア}{イ}$である。
(ii)3回の試行でA,Bがそろっている確率を求める。
例えば、3回の試行のうちAを1回、Bを2回取り出す取り出し方は3通りあり、それらを全て挙げると次のようになる。※表は動画内参照
このように考えることにより、3 回の試行で A. B がそろっている取り出し方はウ通りあることがわかる。よって、3 回の試行で A. B がそろっている確率は$\dfrac{ウ}{2^3}$である。
(iii) 4 回の試行で A. B がそろっている取り出し方はエオ通りある。 よって、4 回の試行でA,B がそろっている確率は$\dfrac{カ}{キ}$である。
(2)箱の中にA,B,Cのカ ー ドが一枚ずつ全で 3 枚入っている場合を考える。
以下では、3 以上の自然数nに対しn回目の試行で初めて A. B. C がそろうとn回の試行で A,B,Cのそれぞれが少なくとも1回は取り出されかつA,B.Cのうちいずれか1枚がn回目の試行で初めて取り出されることを意味する。
(i)3 回目の試行で初めて A. B, C がそろう取り出し方はク通りある。よって、3 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ク}{3^3}$である。
(ii) 4 回目の試行で初めて A.B,C がそろう確率を求める。4 回目の試行で初めて A. B. C がそろう取り出し方は.(1)の(ii)を振り返ることにより、3×ウ通りあることがわかる。よって、4 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ケ}{コ}$である。
(iii)5 回目の試行で初めて A. B. C がそろう取り出し方はサシ通りある。よってを 5 回目の試行で初めてA,B,Cがそろう確率は$\dfrac{サシ}{3^3}$である。
太郎さんと花子さんは. 6 回目の試行で初めて A. B, C, D がそろう確率について考えている。
太郎:例えば. 5 回目までにA,B,Cのそれぞれが少なくとも1回は取り出され.かっ 6 回目に初めてDが取り出される場合を考えたら計算できそうだね。
花子:それなら初めて A. B. C だけがそろうのが, 3 回目のとき. 4 回目のとき. 5 回目のときで分けて考えてみてはどうかな。
6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろう取り出し方がク通りであることに注意すると「 6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろい、かつ6 回目の試行で初めてDが取り出される取り出し方はスセ通りあることがわかる。同じように考えると6回の試行のうち 4 回目の試行で初めて A, B, C だけがそろい、かっ 6 回目の試行で初めてDが取り出される」取り出し方はソタ通りあることもわかる。以上のように考えることにより, 6 回目の試行で初めて A. B. C, D がそろう確率は$\dfrac{チツ}{テトナ}$であることがわかる。
2024共通テスト過去問
この動画を見る
2024共通テスト数学ⅠA第3問解説です
箱の中にカ ー ドが 2 枚以上入っており、それぞれのカ ードにはアルファベットが一文字だけ書かれている。この箱の中からカ ー ドを一枚取り出し、書かれているアルファベットを確認してからもとに戻すという試行をり返し行う。
(1)箱の中にA,Bのカードが 1 枚ずつ全部で 2 枚入っている場合を考える。以下では、2 以上の自然数nに対しn回の試行で A. Bがそろっているとは、n回の試行でA,Bのそれぞれが少なくとも1回は取り出されることを意味する。
(i)2回の試行でA,Bがそろっている確率は$\dfrac{ア}{イ}$である。
(ii)3回の試行でA,Bがそろっている確率を求める。
例えば、3回の試行のうちAを1回、Bを2回取り出す取り出し方は3通りあり、それらを全て挙げると次のようになる。※表は動画内参照
このように考えることにより、3 回の試行で A. B がそろっている取り出し方はウ通りあることがわかる。よって、3 回の試行で A. B がそろっている確率は$\dfrac{ウ}{2^3}$である。
(iii) 4 回の試行で A. B がそろっている取り出し方はエオ通りある。 よって、4 回の試行でA,B がそろっている確率は$\dfrac{カ}{キ}$である。
(2)箱の中にA,B,Cのカ ー ドが一枚ずつ全で 3 枚入っている場合を考える。
以下では、3 以上の自然数nに対しn回目の試行で初めて A. B. C がそろうとn回の試行で A,B,Cのそれぞれが少なくとも1回は取り出されかつA,B.Cのうちいずれか1枚がn回目の試行で初めて取り出されることを意味する。
(i)3 回目の試行で初めて A. B, C がそろう取り出し方はク通りある。よって、3 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ク}{3^3}$である。
(ii) 4 回目の試行で初めて A.B,C がそろう確率を求める。4 回目の試行で初めて A. B. C がそろう取り出し方は.(1)の(ii)を振り返ることにより、3×ウ通りあることがわかる。よって、4 回目の試行で初めて A. B, C がそろう確率は$\dfrac{ケ}{コ}$である。
(iii)5 回目の試行で初めて A. B. C がそろう取り出し方はサシ通りある。よってを 5 回目の試行で初めてA,B,Cがそろう確率は$\dfrac{サシ}{3^3}$である。
太郎さんと花子さんは. 6 回目の試行で初めて A. B, C, D がそろう確率について考えている。
太郎:例えば. 5 回目までにA,B,Cのそれぞれが少なくとも1回は取り出され.かっ 6 回目に初めてDが取り出される場合を考えたら計算できそうだね。
花子:それなら初めて A. B. C だけがそろうのが, 3 回目のとき. 4 回目のとき. 5 回目のときで分けて考えてみてはどうかな。
6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろう取り出し方がク通りであることに注意すると「 6 回の試行のうち 3 回目の試行で初めて A. B. C だけがそろい、かつ6 回目の試行で初めてDが取り出される取り出し方はスセ通りあることがわかる。同じように考えると6回の試行のうち 4 回目の試行で初めて A, B, C だけがそろい、かっ 6 回目の試行で初めてDが取り出される」取り出し方はソタ通りあることもわかる。以上のように考えることにより, 6 回目の試行で初めて A. B. C, D がそろう確率は$\dfrac{チツ}{テトナ}$であることがわかる。
2024共通テスト過去問
【共通テスト】数学1A2024年レビュー・総評・傾向まとめ
【2024年共通テスト解答速報(2日目)】日本最速解答速報LIVE|数学ⅠA→ⅡB→物理 ※冒頭7分55秒まで音声が乱れております。申し訳ございません。
単元:
#大学入試過去問(数学)#物理#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#数学(高校生)#理科(高校生)#大学入試解答速報#数学#共通テスト#物理#共通テスト#共通テスト
指導講師:
理数個別チャンネル
問題文全文(内容文):
10000人登録目指しています。
何卒チャンネル登録お願いします!!!
※冒頭7分55秒まで音声が乱れております。申し訳ございません。
◆解答のまとめ◆
https://note.com/kobetsu_teacher/n/nf15e55b4c121
◆出演者◆
・TAKAHASHI名人
https://www.youtube.com/playlist?list=PLdLgDY469Qr7UEbDX8OecmSefwQulR35t
・ゆう☆たろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5zKa9ZgI9StW_-cNtbBDsn
・烈's study
https://www.youtube.com/playlist?list=PLdLgDY469Qr7QbP6MrNjpltLkbkyaggpv
・理数大明神
https://www.youtube.com/playlist?list=PLdLgDY469Qr6TpcFul6_A9hu5xZ1bQjNU
◆スタッフ◆
しまだじろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5kqaeicgkr6YhPZdkMEB3k
◆ドーナツ差し入れありがとう!!◆
岡ちゃん先生
https://www.youtube.com/playlist?list=PLdLgDY469Qr4OulJQO0KGCDMdykOS6pnX
◎対数の領域の問題で間違えた方はこちらを是非見てください!
(インタビューで烈's study!先生が言っていた動画です)
https://youtu.be/ZAXcZQC_sjw
◎ベクトルで間違えた方はこちらを是非見てください!
(インタビューでゆう☆たろう先生が言っていた動画です)
https://youtu.be/CYcQZEYqXj8
produced by 質問解決DB
https://kaiketsu-db.net/
produced by 理数個別チャンネル
https://www.youtube.com/@UCdQ0y9lyNRKcbH8dv2janrw
この動画を見る
10000人登録目指しています。
何卒チャンネル登録お願いします!!!
※冒頭7分55秒まで音声が乱れております。申し訳ございません。
◆解答のまとめ◆
https://note.com/kobetsu_teacher/n/nf15e55b4c121
◆出演者◆
・TAKAHASHI名人
https://www.youtube.com/playlist?list=PLdLgDY469Qr7UEbDX8OecmSefwQulR35t
・ゆう☆たろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5zKa9ZgI9StW_-cNtbBDsn
・烈's study
https://www.youtube.com/playlist?list=PLdLgDY469Qr7QbP6MrNjpltLkbkyaggpv
・理数大明神
https://www.youtube.com/playlist?list=PLdLgDY469Qr6TpcFul6_A9hu5xZ1bQjNU
◆スタッフ◆
しまだじろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5kqaeicgkr6YhPZdkMEB3k
◆ドーナツ差し入れありがとう!!◆
岡ちゃん先生
https://www.youtube.com/playlist?list=PLdLgDY469Qr4OulJQO0KGCDMdykOS6pnX
◎対数の領域の問題で間違えた方はこちらを是非見てください!
(インタビューで烈's study!先生が言っていた動画です)
https://youtu.be/ZAXcZQC_sjw
◎ベクトルで間違えた方はこちらを是非見てください!
(インタビューでゆう☆たろう先生が言っていた動画です)
https://youtu.be/CYcQZEYqXj8
produced by 質問解決DB
https://kaiketsu-db.net/
produced by 理数個別チャンネル
https://www.youtube.com/@UCdQ0y9lyNRKcbH8dv2janrw
2024共通テスト数学 あけましておめでとう
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数lを3進数と4進数で表したら下3桁が共に012になった
最小のlを求めよ
この動画を見る
自然数lを3進数と4進数で表したら下3桁が共に012になった
最小のlを求めよ
2024共通テスト数学 あけましておめでとう
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ
2024共通テスト過去問
この動画を見る
整数lを3進数と4進数で表したら、ともに下ケタが012になった
最小のlを求めよ
2024共通テスト過去問
直前期の今、使える「授業動画」まとめました(共通テスト2024)
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#英語(高校生)#国語(高校生)#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#共通テスト(古文)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
直前期の今、使える「授業動画」まとめ
この動画を見る
直前期の今、使える「授業動画」まとめ
共通テスト出題予想2024_ココが出ます【地歴公民・数学・英語・国語】
単元:
#共通テスト#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#共通テスト#共通テスト(古文)#数学(高校生)#大学入試解答速報#数学#共通テスト#英語#共通テスト#世界史#共通テスト
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト出題予想2024【地歴公民・数学・英語・国語】
この動画を見る
共通テスト出題予想2024【地歴公民・数学・英語・国語】
共通テスト数学IAIIBで使える「裏技」の総まとめ【全部を覚える必要はない!】
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学IAIIBで使える「裏技」の総まとめ動画です
この動画を見る
共通テスト数学IAIIBで使える「裏技」の総まとめ動画です
【残り9日】共テ数学IAの全大問解説、まとめました【流し見OK】
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学IAの全大問解説、まとめ動画です
この動画を見る
共通テスト数学IAの全大問解説、まとめ動画です
共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
5年連続的中!共通テスト2024出題予想~問題流出同然の「今年はコレが出る」一覧
単元:
#大学入試過去問(数学)#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テスト2024の出題予想です。
この動画では私、篠原が過去の問題の傾向から、2024年の共通テストの問題を予想します。
英語・数学・国語・理科・社会に分けて、出題予想、対策方法を紹介しています。
受験生のみなさん、合格目指してラストスパート頑張りましょう!
#共通テスト
#出題予想
#受験生
#共通テスト2024予想
#篠原好
#京都大学
#勉強法
#大学受験
#受験勉強
#大学入試
この動画を見る
共通テスト2024の出題予想です。
この動画では私、篠原が過去の問題の傾向から、2024年の共通テストの問題を予想します。
英語・数学・国語・理科・社会に分けて、出題予想、対策方法を紹介しています。
受験生のみなさん、合格目指してラストスパート頑張りましょう!
#共通テスト
#出題予想
#受験生
#共通テスト2024予想
#篠原好
#京都大学
#勉強法
#大学受験
#受験勉強
#大学入試
【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮裏技集 紹介動画です(指数・対数、微分積分、数列、ベクトル)
この動画を見る
【共テ数学IIB】解答時間短縮裏技集 紹介動画です(指数・対数、微分積分、数列、ベクトル)
【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
【共通テスト】数学IA 第3問確率がめっちゃ簡単になる本質テクニック、教えます(2023年本試)
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です
球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
この動画を見る
【共通テスト】数学IA 第3問確率が簡単になるテクニック、解説動画です
球が4つある。
赤、青、黄、緑、紫のうちいずれか1色でそれぞれ塗る。
1本の紐で繋がれた2つの球は異なる色。
赤をちょうど2回使う塗り方は何通り?
【共通テスト】数学IA 第2問でスラスラ解けるテクニック、解説します(2023年本試)
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第2問で解けるテクニック、解説動画です
この動画を見る
【共通テスト】数学IA 第2問で解けるテクニック、解説動画です
【共通テスト】数学IA 第1問で満点取る思考回路、解説します(2023年本試)
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第1問で満点取る思考回路、解説
(1)
実数$x$についての不等式$|x+6| \leqq 2$の解は[アイ]$ \leqq x \leqq $[ウエ]である。
よって実数$a,b,c,d$が$|(1-\sqrt{ 3 }(a-b)(c-d)+6|\leqq 2$を満たしているとき、
$1-\sqrt{ 3 }$は負であることに注意すると、$(a-b)(c-d)$のとり得る値の範囲は
[オ]+[カ]$\sqrt{ 3 } \leqq (a-b)(c-d) \leqq$[キ]+[ク]$\sqrt{ 3 }$であることがわかる。
$(a-b)(c-d)=$[キ]+[ク]$\sqrt{ 3 }$・・・・①
であるとき、さらに
$(a-b)(c-d)=-3+\sqrt{ 3 }$・・・・②
が成り立つならば
$(a-b)(c-d)=$[ケ]+[コ]$\sqrt{ 3 }$・・・・③
であることが、等式①、②、③の左辺を展開して比較することによりわかる。
(2)
点Oを中心とし、半径が5である円0がある。
この円周上に2点A,BをAB=6となるようにとる。
また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
①$\sin \angle ACB =$[サ]である。また、点Cを$\angle ACB$が純角となるようにとるとき、$\cos \angle ACB =$[シ]である。
②点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直角ABに垂直な直線を引き、直線ABとの交点をDとするとき、$\tan \angle OAD =$[ス]である。
また、$\triangle ABC$の面積は[セソ]である。
この動画を見る
【共通テスト】数学IA 第1問で満点取る思考回路、解説
(1)
実数$x$についての不等式$|x+6| \leqq 2$の解は[アイ]$ \leqq x \leqq $[ウエ]である。
よって実数$a,b,c,d$が$|(1-\sqrt{ 3 }(a-b)(c-d)+6|\leqq 2$を満たしているとき、
$1-\sqrt{ 3 }$は負であることに注意すると、$(a-b)(c-d)$のとり得る値の範囲は
[オ]+[カ]$\sqrt{ 3 } \leqq (a-b)(c-d) \leqq$[キ]+[ク]$\sqrt{ 3 }$であることがわかる。
$(a-b)(c-d)=$[キ]+[ク]$\sqrt{ 3 }$・・・・①
であるとき、さらに
$(a-b)(c-d)=-3+\sqrt{ 3 }$・・・・②
が成り立つならば
$(a-b)(c-d)=$[ケ]+[コ]$\sqrt{ 3 }$・・・・③
であることが、等式①、②、③の左辺を展開して比較することによりわかる。
(2)
点Oを中心とし、半径が5である円0がある。
この円周上に2点A,BをAB=6となるようにとる。
また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
①$\sin \angle ACB =$[サ]である。また、点Cを$\angle ACB$が純角となるようにとるとき、$\cos \angle ACB =$[シ]である。
②点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直角ABに垂直な直線を引き、直線ABとの交点をDとするとき、$\tan \angle OAD =$[ス]である。
また、$\triangle ABC$の面積は[セソ]である。
【共通テスト本番】数学2Bのテクニック5選
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学2Bのテクニック5選
この動画を見る
数学2Bのテクニック5選
【共通テスト本番】数学1Aのテクニック5選
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
数学1Aのテクニック5選
この動画を見る
数学1Aのテクニック5選
【篠原共通塾】2021年度「数学1A」共通テスト過去問解説
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年度「数学1A」共通テスト過去問解説です。
この動画を見る
2021年度「数学1A」共通テスト過去問解説です。
【篠原共通塾】2021年度「数学2B」共通テスト過去問解説
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年度共通テスト「数学2B」の解説動画です。
この動画を見る
2021年度共通テスト「数学2B」の解説動画です。