大阪府立大学
大阪府立大 漸化式と数学的帰納法・合同式の基本問題
単元:
#大学入試過去問(数学)#漸化式#大阪府立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ 3(a_n+1)+4^{2n-1}$は13の倍数であることを示せ.
大阪府立大(経済)過去問
この動画を見る
$ 3(a_n+1)+4^{2n-1}$は13の倍数であることを示せ.
大阪府立大(経済)過去問
数学「大学入試良問集」【19−13媒介変数表示のグラフと面積】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
媒介変数$t$を用いて$x=1-\cos\ t,y=1+t\ \sin\ t+\cos\ t(0 \leqq t \leqq \pi)$と表される座標平面上の曲線を$C$とする。
このとき、次の各問いに答えよ。
(1)$y$の最大値と最小値を求めよ。
(2)曲線$C,x$軸および$y$軸で囲まれる部分の面積$S$を求めよ。
この動画を見る
媒介変数$t$を用いて$x=1-\cos\ t,y=1+t\ \sin\ t+\cos\ t(0 \leqq t \leqq \pi)$と表される座標平面上の曲線を$C$とする。
このとき、次の各問いに答えよ。
(1)$y$の最大値と最小値を求めよ。
(2)曲線$C,x$軸および$y$軸で囲まれる部分の面積$S$を求めよ。
数学「大学入試良問集」【19−12 (sinx)^nの積分と漸化式の作成】を宇宙一わかりやすく
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して、定積分$I_n$を$I_n=\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^nx\ dx$で定める。
$n \geqq 3$のとき、$I_n$を$I_{n-2}$と$n$を用いて表せ。
また、$I_2・I_4$の値を求めよ。
この動画を見る
自然数$n$に対して、定積分$I_n$を$I_n=\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^nx\ dx$で定める。
$n \geqq 3$のとき、$I_n$を$I_{n-2}$と$n$を用いて表せ。
また、$I_2・I_4$の値を求めよ。
数学「大学入試良問集」【7−4 絶対値と定数分離】を宇宙一わかりやすく
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を定数とする。
放物線$y=x^2+a$と関数$y=4|x-1|-3$のグラフの共有点の個数を求めよ。
この動画を見る
$a$を定数とする。
放物線$y=x^2+a$と関数$y=4|x-1|-3$のグラフの共有点の個数を求めよ。
数学「大学入試良問集」【5−9 確率と二項定理】を宇宙一わかりやすく
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複数の参加者がグー、チョキ、パーを出して勝敗を決めるジャンケンについて、以下の問いに答えよ。
ただし、各参加者は、グー、チョキ、パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする。
(1)
4人で一度だけジャンケンするとき、1人だけが勝つ確率、2人が勝つ確率、3人が勝つ確率、引き分けになる確率をそれぞれ求めよ。
(2)
$n$人で一度だけジャンケンをするとき、$r$人が勝つ確率を$n$と$r$を用いて表せ。
ただし、$n \geqq 2,1 \leqq r \lt n$とする。
(3)
$\displaystyle \sum_{r=1}^{n-1}{}_{ n } C_r=2^n-2$が成り立つことを示し、$n$人でジャンケンをするとき、引き分けになる確率を$n$を用いて表せ。
ただし、$n \geqq 2$とする。
この動画を見る
複数の参加者がグー、チョキ、パーを出して勝敗を決めるジャンケンについて、以下の問いに答えよ。
ただし、各参加者は、グー、チョキ、パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする。
(1)
4人で一度だけジャンケンするとき、1人だけが勝つ確率、2人が勝つ確率、3人が勝つ確率、引き分けになる確率をそれぞれ求めよ。
(2)
$n$人で一度だけジャンケンをするとき、$r$人が勝つ確率を$n$と$r$を用いて表せ。
ただし、$n \geqq 2,1 \leqq r \lt n$とする。
(3)
$\displaystyle \sum_{r=1}^{n-1}{}_{ n } C_r=2^n-2$が成り立つことを示し、$n$人でジャンケンをするとき、引き分けになる確率を$n$を用いて表せ。
ただし、$n \geqq 2$とする。
大阪府立大 積分 面積公式 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大阪府立大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+x^2-4kx+6k^2$
$g(x)=x^3+2x-3k$
$f(x)$と$g(x)$とで囲まれた部分の面積が最大となる$k$の値は?
出典:2012年大阪府立大学 過去問
この動画を見る
$f(x)=x^3+x^2-4kx+6k^2$
$g(x)=x^3+2x-3k$
$f(x)$と$g(x)$とで囲まれた部分の面積が最大となる$k$の値は?
出典:2012年大阪府立大学 過去問