学校別大学入試過去問解説(数学) - 質問解決D.B.(データベース) - Page 86

学校別大学入試過去問解説(数学)

数学「大学入試良問集」【5−5 点の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上を点$P$が次の規則に従って動くとする。
1回サイコロを振るごとに
 ・1または2の目が出ると、$x$軸の正の方向に1進む。
 ・3または4の目が出ると、$y$軸の正の方向に1進む。
 ・5または6の目が出ると、直線$y=x$に関して対称な点に動く。
  ただし、直線$y=x$上にある場合はその位置にとどまる。
点$P$は最初に原点にあるとする。

(1)
$A$回サイコロを振った後の点$P$が直線$y=x$上にある確率を求めよ。

(2)
$m$を$0 \leqq m \leqq n$を満たす整数とする。
$n$回サイコロを振った後の点$P$が直線$x+y=m$上にある確率を求めよ。
この動画を見る 

中学生も解ける?整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$P=a^2-a+2ab+b^2-b$ (a,bは自然数)
Pが素数となるようなa,bをすべて求めよ。(鹿児島大学)
この動画を見る 

数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正三角形の頂点を反時計回りに$A,B,C$と名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点を$A$とする。
4回の試行を続けた後、石が頂点$C$にある確率を求めよ。
この動画を見る 

【化学】有機化学:2021年度慶應義塾大学薬学部大問4(2)チャプター1

アイキャッチ画像
単元: #化学#有機#大学入試過去問(化学)#酸素を含む脂肪族化合物#芳香族化合物#慶應義塾大学#理科(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度慶應義塾大学薬学部大問4(2)チャプター1
化合物Aは、水素原子、炭素原子、酸素原子のみから構成され、ベンゼン環を2個含む分子量500以下のエステルである。0.846gの化合物Aを完全燃焼すると、二酸化炭素2.51gと水0.594gを生じた。化合物Aに水酸化ナトリウム水溶液を加えて加熱し加水分解すると、化合物Bのナトリウム塩と化合物Cが生成した。化合物Bを過マンガン酸カリウムで酸化すると化合物Dが生成した。化合物Dと化合物Eを次々と縮合重合させると、高分子化合物Fが得られ、これは繊維として衣料品に用いられる他、樹脂としてペットボトルの原料となる。
一方、化合物Cに濃硫酸を加え170°Cで加熱したところ、化合物Cおよびその構造異性体H、Iが生成した。化合物Hと化合物Iはシスートランス異性体の関係にあり、化合物 Hはシス形、化合物Iはトランス形である。化合物Cをオゾン分解したところ、化合物Jと化合物Kが得られた。また、化合物 Hをオゾン分解したところ、ベンズアルデヒドと化合物Lが得られた。化合物Jと化合物Lはフェーリング液を還元し赤色沈澱を生成した。化合物Kはフェーリング液を還元しなかったが、ヨードホルム反応は陽性だった。なお、オゾン分解の反応経路を図1に示す。
問2 化合物D、E、Kの化合物名を解答用紙に書きなさい。
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(2)/文科第3問(2)解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(2)
a,bを実数とする。座標平面上の放物線
$C:y=x^2+ax+b$
は放物線$y=-x^2$と2つの共有点を持ち、一方の共有点のx座標は$-1<x<0$を満たし、他方の共有点のx座標は$0<x<1$を満たす。
(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
この動画を見る 

数学「大学入試良問集」【5−3 カードの並べ方と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉医科大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$1$から$6$までの数字を書いた6枚のカードを左から右に1列に並べるとき、次のようにカードが並ぶ確率を求めよ。
(1)
$1,2,3$のカードのうちの2枚が両端に並ぶ

(2)
$1$のカードが$2$または$3$のカードの隣に並ぶ

(3)
$1$と$6$のカードの間に2枚以上のカードが並ぶ

(4)
任意のカードについて、そのカードより左側にあるカードのうち、奇数カードの枚数が、偶数カードの枚数より少なくないように並ぶ。
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科第1問(1)/文科第3問(1)解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学2021年度理科大問1(文科大問3)(1)2曲線の共有点の存在範囲はx軸上で考えよ
a,bを実数とする。座標平面上の放物線
C:y=x²+ax+b
は放物線y=-x²と2つの共有点を持ち、一方の共有点のx座標は-1<x<0を満たし、他方の共有点のx座標は0<x<1を満たす。

(1)点(a,b)のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。
この動画を見る 

数学「大学入試良問集」【5−2 確率と円順列】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学#大阪市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上とし、$n$組の夫婦が、$2n$人掛の円卓に着席するものとする。
着席位置を無作為に決めるとき、次の問いに答えよ。
(1)男女が交互に着席する確率を求めよ。
(2)どの夫婦も隣り合わせに着席する確率を求めよ。
(3)男女が交互になり、かつ、どの夫婦も隣り合わせに着席する確率を求めよ。
この動画を見る 

数学「大学入試良問集」【5−1 重複組み合わせ】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1つのさいころを続けて5回投げて、出た目を順に$x_1,x_2,x_3,x_4,x_5$とする。
このとき、$x_1 \leqq x_2 \leqq x_3$と$x_3 \geqq x_4 \geqq x_5$,両不等式が同時に成り立つ確率を求めよ。
この動画を見る 

数学「大学入試良問集」【4−6 正七角形の対角線】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正七角形について、以下の問いに答えよ。
(1)対角線の総数を求めよ。
(2)対角線を2本選ぶ組み合わせは何通りあるか答えよ。
(3)頂点を共有する2本の対角線は何組あるか答えよ。
(4)共有点をもたない2本の対角線は何組あるか答えよ。
(5)正七角形の内部で交わる2本の対角線は何組あるか答えよ。
この動画を見る 

【化学】有機化学:2021年度慶應義塾大学薬学部大問4(1)

アイキャッチ画像
単元: #化学#有機#大学入試過去問(化学)#有機化合物の特徴と構造#慶應義塾大学#理科(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2021年度慶應義塾大学薬学部大問4(1)の解説動画です
化合物Aは、水素原子、炭素原子、酸素原子のみから構成され、ベンゼン環を2個含む分子量500以下のエステルである。0.846gの化合物Aを完全燃焼すると、二酸化炭素2.51gと水0.594gを生じた。化合物Aに水酸化ナトリウム水溶液を加えて加熱し加水分解すると、化合物Bのナトリウム塩と化合物Cが生成した。化合物Bを過マンガン酸カリウムで酸化すると化合物Dが生成した。化合物Dと化合物Eを次々と縮合重合させると、高分子化合物Fが得られ、これは繊維として衣料品に用いられる他、樹脂としてペットボトルの原料となる。
一方、化合物Cに濃硫酸を加え170°Cで加熱したところ、化合物Cおよびその構造異性体H、Iが生成した。化合物Hと化合物Iはシスートランス異性体の関係にあり、化合物 Hはシス形、化合物Iはトランス形である。化合物Cをオゾン分解したところ、化合物Jと化合物Kが得られた。また、化合物 Hをオゾン分解したところ、ベンズアルデヒドと化合物Lが得られた。化合物Jと化合物Lはフェーリング液を還元し赤色沈澱を生成した。化合物Kはフェーリング液を還元しなかったが、ヨードホルム反応は陽性だった。なお、オゾン分解の反応経路を図1に示す。
問1 化合物Aの分子量を求めよ。
この動画を見る 

数学「大学入試良問集」【4−5 整数の個数】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
5桁の自然数$n$の万の位、千の位、百の位、十の位、一の位の数字をそれぞれ$a,b,c,d,e$とする。
次の各条件について、それを満たす$n$は、何個あるか。
(1)$a,b,c,d,e$が互いに異なる。
(2)$a \gt b$
(3)$a \lt b \lt c \lt d \lt e$
この動画を見る 

数学「大学入試良問集」【4−4 組分け問題②】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
白色、赤色、橙色、黄色、緑色、青色、藍色、紫色の同じ大きさの球が1個ずつ全部で8個ある。
これらの8個の球を2個1組として4つに分ける。
このような分け方は全部で何通りあるか。

(2)
(1)の8個の球にさらに同じ大きさの白色の球2個を付けくわえる。
これらの10個の球を2個1組として5つに分ける。
このような分け方は全部で何通りあるか。
この動画を見る 

数学「大学入試良問集」【4−3 経路の問題】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$xy$平面上に$x=(k$は整数)または$y=l(l$は整数)で定義される碁盤の目のような街路がある。
4点$(2,2),(2,4),(4,2),(4,4)$に障害物があって通れないとき、$(0,0)$と$(5,5)$を結ぶ最短経路は何通りあるか。
この動画を見る 

大阪市立大 奇数の和 奇数の平方の和

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数である.
$S_n=1+3+5+・・・・+n$
$T_n=1^2+3^2+5^2+・・・・n^2$

①$S_n$は$n$で割り切れないことを示せ.
②$T_n$が$n$で割り切れるための$n$の条件を求めよ.

2021大阪市立大過去問
この動画を見る 

数学「大学入試良問集」【4−2 同じものを含む順列】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a,a,b,b,c,d,e,f$の8文字をすべて並べて文字列をつくる。
文字$a$と文字$e$は母音字である。
(1)文字列は全部で何通りあるか。
(2)同じ文字が連続して並ばない文字列は何通りできるか。
(3)母音字が3つ連続して並ぶ文字列は何通りできるか。
(4)母音字が連続して並ばない文字列は何通りできるか。
この動画を見る 

数学「大学入試良問集」【3−6不定方程式②】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$3$以上$9999$以下の奇数$a$で、$a^2-a$が$10000$で割り切れるものをすべて求めよ。
この動画を見る 

数学「大学入試良問集」【3−4 整数 n進法】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
7進法で表すと3けたとなる正の整数がある。
これを11進法で表すと、やはり3けたで、数字の順序がもととちょうど反対となる。
このような整数を10進法で表せ。
この動画を見る 

数学「大学入試良問集」【3−3 整数 余りによる分類②】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)
$p,2p+1,4p+1$がいずれも素数であるような$p$をすべて求めよ。

(2)
$q,2q+1,4q-1,6q-1,8q+1$がいずれも素数であるような$q$をすべて求めよ。
この動画を見る 

数学「大学入試良問集」【3−2 整数 余りによる分類①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a,b,c$を正の整数とする。
(1)$a^2$を3で割った余りは0または1であることを示せ。
(2)$a^2+b^2=c^2$を満たすとき、$a,b,c$の積$abc$が3の倍数であることを示せ。
(3)$a^2+b^2=225$を満たす$a,b$の値を求めよ。
この動画を見る 

数学「大学入試良問集」【3−1 整数 不定方程式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$p,q,r$は不等式$p \leqq q \leqq r$を満たす正の整数とする。
このとき、次の各問いに答えよ。
(1)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}=1$を満たす$p,q$をすべて求めよ。

(2)
$\displaystyle \frac{1}{p}+\displaystyle \frac{1}{q}+\displaystyle \frac{1}{r}=1$を満たす$p,q,r$をすべて求めよ。
この動画を見る 

数学「大学入試良問集」【2−6 相反方程式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
実数$x \neq 0$に対して$|x+\displaystyle \frac{1}{x}|$のとり得る値の範囲を求めよ。

(2)
$a,b$を実数の定数とする。
方程式$x^4+ax^3+bx^2+ax+1=0$が実数解をもたないとき、点$(a,b)$の存在範囲を図示せよ。
この動画を見る 

数学「大学入試良問集」【2−5 相加平均・相乗平均】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の問いに答えよ。
(1)
正の実数$x,y$に対して
$\displaystyle \frac{y}{x}+\displaystyle \frac{x}{y} \geqq 2$
が成り立つことを示し、等号が成立するための条件を求めよ。

(2)
$n$を自然数とする。
$n$個の正の実数$a_1,a_2,・・・,a_n$に対して
$(a_1+・・・+a_n)\left[ \dfrac{ 1 }{ a_1 }+・・・+\displaystyle \frac{1}{a_n} \right] \geqq n^2$
が成り立つことを示し、等号が成立するための条件を求めよ。
この動画を見る 

数学「大学入試良問集」【2−4 剰余の定理•商と余り】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$x$の整式$p(x)$を$x-3$で割った余りは$2,(x-2)^2$で割った余りは$x+1$である。
$p(x)$を$(x-2)^2$で割った商は$q(x)$とするとき、$q(x)$を$x-3$で割った余りを求めよ。

(2)
$p(x)$は(1)と同じ条件を満たすものとする。
このとき、$xp(x)$を$(x-3)(x-2)^2$で割った余りを求めよ。
この動画を見る 

数学「大学入試良問集」【2−3 方程式と整数解】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$p,q$を整数とし、$f(x)=x^2+px+q$とおく。
(1)
有理数$a$が方程式$f(x)=0$の一つの解ならば、$a$は整数であることを示せ。

(2)
$f(1)$も$f(2)$も$2$で割り切れないとき、方程式$f(x)=0$は整数の解を持たないことを示せ。
この動画を見る 

数学「大学入試良問集」【2−2 高次方程式と解】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\alpha=\displaystyle \frac{3+\sqrt{ 7 }\ i}{2}$とする。
ただし、$i$は虚数単位である。次の問いに答えよ。
(1)
$\alpha$を解にもつような2次方程式$x^2+px+q=0(p,q$は整数)を求めよ。

(2)
整数$a,b,c$を係数とする3次方程式$x^3+ax^2+bx+c=0$について、解の1つは$\alpha$であり、また$0 \leqq x \leqq 1$の範囲に実数解を1つもつとする。
このような整数の組$(a,b,c)$を全て求めよ。
この動画を見る 

数学「大学入試良問集」【2−1 解と係数の関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3方程式 $x^3-2x^2+3x-4=0$の3つの解を複素数の範囲で考え、それらを$\alpha,\beta,\gamma$とする。
以下の問いに答えよ。
(1)$\alpha^4+\beta^4+\gamma^4$の値を求めよ。
(2)$\alpha^5+\beta^5+\gamma^5$の値を求めよ。
この動画を見る 

数学「大学入試良問集」【1−3 背理法・対偶】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
 (ⅰ)$\sqrt{ 2 }$が無理数であることを証明せよ。
 (ⅱ)実数$a$が$a^3+\alpha+1=0$を満たすとき、$\alpha$が無理数であることを証明せよ。

(2)
 (ⅰ)$n$を自然数とするとき、$n^3$が$3$の倍数ならば、$n$は$3$の倍数のなることを証明せよ。
 (ⅱ)$\sqrt[ 3 ]{ 3 }$が無理数であることを証明せよ。
この動画を見る 

数学「大学入試良問集」【1−2 数と式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
 (ア)必要条件ではあるが、十分条件ではない
 (イ)十分条件ではあるが、必要条件ではない
 (ウ)必要十分条件である
 (エ)必要条件でも、十分条件でもない

(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
この動画を見る 

数学「大学入試良問集」【1−1 数と式】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$a^2+b^2+c^2=1$を満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$ab+bc+ca$を$x$の2次式で表せ。

(2)
$a^2+b^2+c^2=1,\ a^3+b^3+c^3=0,\ abc=3$をすべて満たす複素数$a,b,c$に対して、$x=a+b+c$とおく。
このとき、$x^3-3x$の値を求めよ。
この動画を見る 
PAGE TOP