式の計算(整式・展開・因数分解)
地道に因数分解?一瞬で因数分解?
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
次の式を因数分解せよ.
$(x-y)^3+(y-z)^3+(z-x)^3$
この動画を見る
次の式を因数分解せよ.
$(x-y)^3+(y-z)^3+(z-x)^3$
ナイスな連立三元2次方程式
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-yz=1 \\\
y^2-zx=2\\\
z^2-xy=3
\end{array}
\right.
\end{eqnarray}$
この動画を見る
これを解け.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2-yz=1 \\\
y^2-zx=2\\\
z^2-xy=3
\end{array}
\right.
\end{eqnarray}$
誘導にのれるか、のれないか。弘学館
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$45^2 = ?$
$x^2 - 2 \sqrt2x -2023 = 0$を解け
弘学館高等学校
この動画を見る
$45^2 = ?$
$x^2 - 2 \sqrt2x -2023 = 0$を解け
弘学館高等学校
ただの因数分解
ただの因数分解と整数問題
単元:
#数Ⅰ#数A#数と式#場合の数と確率#式の計算(整式・展開・因数分解)#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①因数分解せよ.
$(x-2)(x-1)(x+1)(x+2)+2$
②$n^5-5n^3+5n+7$が120の倍数となる自然数nを一つ求めよ.
この動画を見る
①因数分解せよ.
$(x-2)(x-1)(x+1)(x+2)+2$
②$n^5-5n^3+5n+7$が120の倍数となる自然数nを一つ求めよ.
気付けば一瞬だが、意外と難しいのよ。因数分解
福田の数学〜慶應義塾大学2023年薬学部第1問(1)〜素因数分解と変数の値
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。
2023慶應義塾大学薬学部過去問
この動画を見る
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。
2023慶應義塾大学薬学部過去問
式の値と平方根
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x + y = 3 , xy = -1$
$x^2 -y^2 = ?$
($x>y$)
西部学園文理高等学校
この動画を見る
$x + y = 3 , xy = -1$
$x^2 -y^2 = ?$
($x>y$)
西部学園文理高等学校
慶應志木 式の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\frac{7}{3+ \sqrt 2}$のとき
$(x-1)(x-2)(x-4)(x-5) = ?$
2023慶應義塾志木高等学校
この動画を見る
$x=\frac{7}{3+ \sqrt 2}$のとき
$(x-1)(x-2)(x-4)(x-5) = ?$
2023慶應義塾志木高等学校
因数分解(難)
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解せよ.
$x^3y-xy^3-x^2+y^2+2xy-1$
この動画を見る
因数分解せよ.
$x^3y-xy^3-x^2+y^2+2xy-1$
関西医科大
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3x^2+xy-2y^2-x+4y=4$をみたす整数(x,y)を求めよ.
関西医科大過去問
この動画を見る
$3x^2+xy-2y^2-x+4y=4$をみたす整数(x,y)を求めよ.
関西医科大過去問
素因数分解せよ 慶應女子
式の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2023 \\
x^3+y^3=1930
\end{array}
\right.
\end{eqnarray}$
$x+y=?$
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2023 \\
x^3+y^3=1930
\end{array}
\right.
\end{eqnarray}$
$x+y=?$
1024143素因数分解せよ
目の前にあるものをいきなり食べてはいけません。
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a= 9999のとき
$\frac{4a^3 - a }{(2a+1)(6a-3)} = ?$
この動画を見る
a= 9999のとき
$\frac{4a^3 - a }{(2a+1)(6a-3)} = ?$
気付けば一瞬!! 式の値
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a = 49 , b = 51のとき
$\frac{a^2+b^2}{2} + ab$
桃山学院高等学校
この動画を見る
a = 49 , b = 51のとき
$\frac{a^2+b^2}{2} + ab$
桃山学院高等学校
新高校1年生へ!失敗しない(ほぼ一発で)たすきがけ因数分解
高1数学の展開
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a+b+c=1$
$a^2+b^2+c^2=13$
$(a-b)^2 + (b-c)^2 + (c-a)^2 = ?$
共通テスト
この動画を見る
$a+b+c=1$
$a^2+b^2+c^2=13$
$(a-b)^2 + (b-c)^2 + (c-a)^2 = ?$
共通テスト
素因数分解しろ! prime factorization
単元:
#数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$2581を素因数分解せよ。$
この動画を見る
$2581を素因数分解せよ。$
日大(医)中学生もチャレンジして!
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P=a^4-25a^2-50a-25$であり、
$\vert P \vert$が素数となる整数aを求めよ。
日大(医)過去問
この動画を見る
$P=a^4-25a^2-50a-25$であり、
$\vert P \vert$が素数となる整数aを求めよ。
日大(医)過去問
筆算せずに計算する 慶應女子
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{86^2-2 \times 86 \times 77 +77^2}{15^2} +
\frac{15^2+2 \times 15 \times 13 +13^2}{35^2}$
この動画を見る
$\frac{86^2-2 \times 86 \times 77 +77^2}{15^2} +
\frac{15^2+2 \times 15 \times 13 +13^2}{35^2}$
東大寺学園の因数分解はいつも面白い 2023
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2(b+1)^2+2a(b^2 -a)+b(b-2a^2)$
2023東大寺学園高等学校
この動画を見る
因数分解せよ
$a^2(b+1)^2+2a(b^2 -a)+b(b-2a^2)$
2023東大寺学園高等学校
【数Ⅰ】数と式:【難問】開いて閉じて、因数分解②
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$(x-z)^3+(y-z)^3-(x+y-2z)^3$を因数分解しなさい.
この動画を見る
$(x-z)^3+(y-z)^3-(x+y-2z)^3$を因数分解しなさい.
【数Ⅰ】数と式:【難問】開いて閉じて、因数分解①
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$(y-z)^3+(z-x)^3+(x-y)^3$を因数分解しなさい
この動画を見る
$(y-z)^3+(z-x)^3+(x-y)^3$を因数分解しなさい
展開だけど、カラクリわかるかな? 慶應義塾
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
(x+2y)(2x-y)(3x+y)(x-3y)を展開せよ
慶應義塾高等学校
この動画を見る
(x+2y)(2x-y)(3x+y)(x-3y)を展開せよ
慶應義塾高等学校
ざ・因数分解
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^4(b-c)+b^4(c-a)+c^4(a-b)$
これを因数分解せよ.
この動画を見る
$a^4(b-c)+b^4(c-a)+c^4(a-b)$
これを因数分解せよ.
2023京都大学 整式の剰余
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^{2023}-1$を$x^4+x^3+x^2+x+1$で割ったあまりを求めよ.
2023京都大過去問
この動画を見る
$x^{2023}-1$を$x^4+x^3+x^2+x+1$で割ったあまりを求めよ.
2023京都大過去問
2023高校入試解説27問目 √が入っている因数分解 早稲田本庄
単元:
#数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$3x^2+y^2+2 \sqrt{3}xy+7 \sqrt3x+7y -18$
2023早稲田大学 本庄高等学院
この動画を見る
因数分解せよ
$3x^2+y^2+2 \sqrt{3}xy+7 \sqrt3x+7y -18$
2023早稲田大学 本庄高等学院
素数か?
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$A_{2023}$は素数か?
$A_n=\alpha^n+\beta^n+\delta^n$
$A_1=\alpha+\beta+\delta=1$
$A_2=\alpha^2+\beta^2+\delta^2=3$
$A_3=\alpha^3+\beta^3+\delta^3=10$
この動画を見る
$A_{2023}$は素数か?
$A_n=\alpha^n+\beta^n+\delta^n$
$A_1=\alpha+\beta+\delta=1$
$A_2=\alpha^2+\beta^2+\delta^2=3$
$A_3=\alpha^3+\beta^3+\delta^3=10$
高校生は知ってるが、中学生は知らない。式の値 同志社国際
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a + b = \frac{1}{2}$ , $b + c = \frac{1}{3}$ , $c + a = \frac{1}{6}$
$a^2 + b^2 + c^2 +2ab +2bc +2ca = ?$
同志社国際高等学校
この動画を見る
$a + b = \frac{1}{2}$ , $b + c = \frac{1}{3}$ , $c + a = \frac{1}{6}$
$a^2 + b^2 + c^2 +2ab +2bc +2ca = ?$
同志社国際高等学校