図形と計量
2023高校入試解説35問目 円と角度 中大杉並
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle DEF$をxで表せ
*図は動画内参照
2023中央大学杉並高等学校
この動画を見る
$\angle DEF$をxで表せ
*図は動画内参照
2023中央大学杉並高等学校
全体の面積を求めよ
五角形の面積=❓ 芝浦工大柏 〇〇先生登場!!
正方形と角度
【短時間でマスター!!】内接円や外接円と三角形に関する面積の求め方を解説!〔現役塾講師解説、数学〕
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
数学1A
内接円や外接円と三角形に関する面積の求め方を解説します。
この動画を見る
数学1A
内接円や外接円と三角形に関する面積の求め方を解説します。
福田の1.5倍速演習〜合格する重要問題093〜中央大学2020年度理工学部第5問〜円周上の点と三角形五角形の面積
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#微分法と積分法#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。
2020中央大学理工学部過去問
この動画を見る
$\Large\boxed{5}$ 原点Oを中心とする半径1の円周上に2点
Q($\cos a$, $\sin a$), R($\cos(a+b), \sin(a+b)$)
をとる。ただし、a, bはa >0,b >0, a +b<$\frac{\pi}{2}$を満たす。また、点Qからx軸へ下ろした垂線の足を点Pとし、点Rからy軸へ下した垂線の足を点Sとする。
$\triangle$OPQの面積と$\triangle$ORSの面積の和をA, 五角形OPQRSの面積をBとおく。
(1)Aをaとbで表せ。
(2)bを固定して、aを0<a<$\frac{\pi}{2}$-bの範囲で動かすとき、Aがとりうる値の範囲をbで表し、Aが最大値をとるときのaの値をbで表せ。
(3)Bはa=$\frac{\pi}{8}$, b=$\frac{\pi}{4}$のときに最大値をとることを示せ。
2020中央大学理工学部過去問
おうぎ形の面積 数学YouTuberが今流行りの数学YouTuberについて語る
【短時間でマスター!!】三角形の面積の求め方を解説!〔現役塾講師解説、数学〕
2023共通テスト 正弦定理で解く!?こんな解き方もあり?
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=5
$sin\angle ACB = $
*図は動画内参照
2023共通テスト数ⅠA
この動画を見る
円の半径=5
$sin\angle ACB = $
*図は動画内参照
2023共通テスト数ⅠA
2023高校入試解説16問目 3つの内接円 渋谷教育学園幕張
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle QPR=?$
*図は動画内参照
2023渋谷教育学園幕張高等学校
この動画を見る
$\angle QPR=?$
*図は動画内参照
2023渋谷教育学園幕張高等学校
【短時間でマスター!!】正弦定理・余弦定理を解説!〔現役塾講師解説、数学〕
2023高校入試解説11問目 円の方程式??2日大習志野(改)
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=?
Bの座標=?
*図は動画内参照
2023日本大学習志野高等学校(改)
この動画を見る
円の半径=?
Bの座標=?
*図は動画内参照
2023日本大学習志野高等学校(改)
共通テストだけど中学生も解ける!!
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABCの面積が最大になるとき△ABC=?
*点Cは円周上
*図は動画内参照
2023共通テスト数ⅠA
この動画を見る
△ABCの面積が最大になるとき△ABC=?
*点Cは円周上
*図は動画内参照
2023共通テスト数ⅠA
福田の数学〜2023年共通テスト速報〜数学IA第1問不等式の解と図形の計量
単元:
#数Ⅰ#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
第1問
[1]実数xについての不等式
|$x$+6| $\leqq$ 2
の解は
$\boxed{\ \ アイ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }$
である。
よって、実数$a,b,c,d$が
|(1-$\sqrt3$)($a-b$)($c-d$)+6| $\leqq$2
を満たしているとき、1-$\sqrt3$は負であることに注意すると、($a-b$)($c-d$)
の取り得る値の範囲は
$\boxed{\ \ オ\ \ }+\boxed{\ \ カ\ \ }\sqrt3 \leqq (a-b)(c-d) \leqq \boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3$
であることがわかる。
特に
$(a-b)(c-d)=\boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3 \cdots①$
であるとき、さらに
$(a-c)(b-d)=-3+\sqrt3 \cdots②$
が成り立つならば
$(a-d)(c-b)=\boxed{\ \ ケ\ \ }+\boxed{\ \ コ\ \ }\sqrt3 \cdots③$
であることが、等式①,②,③の左辺を展開して比較することによりわかる。
[2]
(1)点Oを中心とし、半径が5である円Oがある。この円周上に2点A,B
をAB=6となるようにとる。また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
(i)$\sin\angle ACB=\boxed{\boxed{\ \ サ\ \ }}$である。また、点Cを\angle ACBが鈍角となるようにとるとき、$\cos\angle ACB=\boxed{\boxed{\ \ シ\ \ }}$である。
(ii)点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直線ABに垂直な直線を引き、直線ABとの交点をDとするとき、
$\tan\angle OAD=\boxed{\boxed{\ \ ス\ \ }}$である。また、$\triangle ABC$の面積は$\boxed{\ \ セソ\ \ }$である。
$\boxed{\boxed{\ \ サ\ \ }}$ ~ $\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$\displaystyle\frac{3}{5}$ ①$\displaystyle\frac{3}{4}$ ②$\displaystyle\frac{4}{5}$ ③ 1④$\displaystyle\frac{4}{3}$
⑤$-\displaystyle\frac{3}{5}$ ⑥$-\displaystyle\frac{3}{4}$ ⑦$-\displaystyle\frac{4}{5}$ ⑧ -1⑨$-\displaystyle\frac{4}{3}$
(2)半径が5である球Sがある。この球面上に3点P,Q,Rをとったとき、
これらの3点を通る平面α上でPQ=8, QR=5, RP=9であったとする。
球Sの球面上に点Tを三角錐TPQRの体積が最大となるようにとるとき、その体積を
求めよう。
まず、$\cos\angle QPR=\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}$である
ことから、$\triangle PQR$の面積は$\boxed{\ \ ツ\ \ }\sqrt{\boxed{\ \ テト\ \ }}$である。
次に、点Tから平面αに垂直な直線を引き、平面αとの交点をHとする。このとき、PH,QH,RHの長さについて、$\boxed{\boxed{\ \ ナ\ \ }}$が成り立つ。
以上より、三角錐TPQRの体積は$\boxed{\ \ ニヌ\ \ }\left(\sqrt{\boxed{\ \ ネノ\ \ }}+\sqrt{\boxed{\ \ ハ\ \ }}\right)$である。
$\boxed{\boxed{\ \ ナ\ \ }}$の解答群
⓪PH<QH<RH ①PH<RH<QH
②QH<PH<RH ③QH<RH<PH
④RH<PH<QH ⑤RH<QH<PH
⑥PH=QH=RH
2023共通テスト過去問
この動画を見る
第1問
[1]実数xについての不等式
|$x$+6| $\leqq$ 2
の解は
$\boxed{\ \ アイ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }$
である。
よって、実数$a,b,c,d$が
|(1-$\sqrt3$)($a-b$)($c-d$)+6| $\leqq$2
を満たしているとき、1-$\sqrt3$は負であることに注意すると、($a-b$)($c-d$)
の取り得る値の範囲は
$\boxed{\ \ オ\ \ }+\boxed{\ \ カ\ \ }\sqrt3 \leqq (a-b)(c-d) \leqq \boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3$
であることがわかる。
特に
$(a-b)(c-d)=\boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3 \cdots①$
であるとき、さらに
$(a-c)(b-d)=-3+\sqrt3 \cdots②$
が成り立つならば
$(a-d)(c-b)=\boxed{\ \ ケ\ \ }+\boxed{\ \ コ\ \ }\sqrt3 \cdots③$
であることが、等式①,②,③の左辺を展開して比較することによりわかる。
[2]
(1)点Oを中心とし、半径が5である円Oがある。この円周上に2点A,B
をAB=6となるようにとる。また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
(i)$\sin\angle ACB=\boxed{\boxed{\ \ サ\ \ }}$である。また、点Cを\angle ACBが鈍角となるようにとるとき、$\cos\angle ACB=\boxed{\boxed{\ \ シ\ \ }}$である。
(ii)点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直線ABに垂直な直線を引き、直線ABとの交点をDとするとき、
$\tan\angle OAD=\boxed{\boxed{\ \ ス\ \ }}$である。また、$\triangle ABC$の面積は$\boxed{\ \ セソ\ \ }$である。
$\boxed{\boxed{\ \ サ\ \ }}$ ~ $\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$\displaystyle\frac{3}{5}$ ①$\displaystyle\frac{3}{4}$ ②$\displaystyle\frac{4}{5}$ ③ 1④$\displaystyle\frac{4}{3}$
⑤$-\displaystyle\frac{3}{5}$ ⑥$-\displaystyle\frac{3}{4}$ ⑦$-\displaystyle\frac{4}{5}$ ⑧ -1⑨$-\displaystyle\frac{4}{3}$
(2)半径が5である球Sがある。この球面上に3点P,Q,Rをとったとき、
これらの3点を通る平面α上でPQ=8, QR=5, RP=9であったとする。
球Sの球面上に点Tを三角錐TPQRの体積が最大となるようにとるとき、その体積を
求めよう。
まず、$\cos\angle QPR=\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}$である
ことから、$\triangle PQR$の面積は$\boxed{\ \ ツ\ \ }\sqrt{\boxed{\ \ テト\ \ }}$である。
次に、点Tから平面αに垂直な直線を引き、平面αとの交点をHとする。このとき、PH,QH,RHの長さについて、$\boxed{\boxed{\ \ ナ\ \ }}$が成り立つ。
以上より、三角錐TPQRの体積は$\boxed{\ \ ニヌ\ \ }\left(\sqrt{\boxed{\ \ ネノ\ \ }}+\sqrt{\boxed{\ \ ハ\ \ }}\right)$である。
$\boxed{\boxed{\ \ ナ\ \ }}$の解答群
⓪PH<QH<RH ①PH<RH<QH
②QH<PH<RH ③QH<RH<PH
④RH<PH<QH ⑤RH<QH<PH
⑥PH=QH=RH
2023共通テスト過去問
ハルハルさんの作成問題「たぶん名作だと思います。難易度は高め」 図形 三角比
単元:
#数Ⅰ#数Ⅱ#式と証明#図形と計量#三角比への応用(正弦・余弦・面積)#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\theta$:実数
3辺の長さが$2\sin\theta,\ 2\cos\theta,\ \displaystyle \frac{\tan\theta}{\sqrt{ 3 }}$の三角形が単位円に内接している。
この条件を満たしている三角形の面積をすべて求めよ。
この動画を見る
$\theta$:実数
3辺の長さが$2\sin\theta,\ 2\cos\theta,\ \displaystyle \frac{\tan\theta}{\sqrt{ 3 }}$の三角形が単位円に内接している。
この条件を満たしている三角形の面積をすべて求めよ。
補助線のセンスを磨け!2通りで解説
高さが等しい面積比
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
高さが等しい図形の面積比
A:B:C=
*図は動画内参照
この動画を見る
高さが等しい図形の面積比
A:B:C=
*図は動画内参照
知っていれば一瞬。傍接円と三角形の周の長さ 清風南海高校
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△DEFの周の長さは?
*図は動画内参照
清風南海高等学校
この動画を見る
△DEFの周の長さは?
*図は動画内参照
清風南海高等学校
直角三角形と2つの円 茨城県
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円Oの半径=?
(円Oの半径=円O'の半径)
*図は動画内参照
茨城県
この動画を見る
円Oの半径=?
(円Oの半径=円O'の半径)
*図は動画内参照
茨城県
【わかりやすく解説】三角方程式(高校数学Ⅰ/三角比)
単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師:
【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$の時、次の等式を満たす$\theta$の値を求めよ
(1)$2\sin\theta=1$
(2)$2\cos\theta=-1$
(3)$\sqrt{ 3 }\tan\theta-1=0$
(4)$\cos\theta=0$
この動画を見る
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$の時、次の等式を満たす$\theta$の値を求めよ
(1)$2\sin\theta=1$
(2)$2\cos\theta=-1$
(3)$\sqrt{ 3 }\tan\theta-1=0$
(4)$\cos\theta=0$
正方形の中にある直角三角形の面積
福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ
単元:
#数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。
2021北里大学医学部過去問
この動画を見る
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。
2021北里大学医学部過去問
【裏側】ビビるくらい一瞬で解く
【高校数学】余弦定理の応用~問題演習~ 3-7.5【数学Ⅰ】
内接円の半径を求める公式で解けるのか? 慶應志木
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=?
*図は動画内参照
慶應義塾志木高等学校
この動画を見る
円の半径=?
*図は動画内参照
慶應義塾志木高等学校
【数検2級】数学検定2級2次:問題6
単元:
#数Ⅰ#数学検定・数学甲子園・数学オリンピック等#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学検定#数学検定2級#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
問題6.(必須)
△ABCにおいて、$BC=a、CA=b、AB=c$とするとき、次の問いに答えなさい。
(1)$a\cos B+b\cos A-c$ の値を求めなさい。この問題は解法の過程を記述せずに、答えだけを書いてください。
(2) 次の等式が成り立つとき、△ABCはどのような三角形ですか。理由をつけて答えなさい。
$a^2\sin^2B+b^2\sin^2 A=2ab\cos A\cos B$
この動画を見る
問題6.(必須)
△ABCにおいて、$BC=a、CA=b、AB=c$とするとき、次の問いに答えなさい。
(1)$a\cos B+b\cos A-c$ の値を求めなさい。この問題は解法の過程を記述せずに、答えだけを書いてください。
(2) 次の等式が成り立つとき、△ABCはどのような三角形ですか。理由をつけて答えなさい。
$a^2\sin^2B+b^2\sin^2 A=2ab\cos A\cos B$
正六角形
角の和 茨城県 動画内に誘導あり 茨城県
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle BAC + \angle CDE$=?
*図は動画内参照
茨城県
この動画を見る
$\angle BAC + \angle CDE$=?
*図は動画内参照
茨城県
円と三角形の面積
引っかけ問題!? 円 斜線部の面積を求めよ 慶應義塾
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径$\sqrt 2$の円
斜線部の面積は?
*図は動画内参照
慶應義塾高等学校
この動画を見る
半径$\sqrt 2$の円
斜線部の面積は?
*図は動画内参照
慶應義塾高等学校