数Ⅰ - 質問解決D.B.(データベース) - Page 51

数Ⅰ

「二次不等式の解の配置①」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2-2ax-2a+3=0$が次のような解をもつとき、定数$a$の値の範囲を求めよ。
(1)異なる2つの正の解をもつ
(2)異なる2つの負の解をもつ
(3)$x \lt -2$の範囲に異なる2解をもつ
(4)$-1 \leqq x \leqq 2$の範囲に異なる2つの解をもつ
(5)正の解と負の解をそれぞれ1つずつもつ
(6)$0 \lt x \lt 2,2 \lt x \lt 4$の範囲に1つずつ解をもつ
(7)$-2 \leqq x \leqq 1,3 \leqq x \leqq 5$の範囲に1つずつ解をもつ
(8)2解のうちの1つを$1 \lt x \lt 5$の範囲にもつ
(9)$-4 \leqq x \leqq -2$の範囲に解をもつ
この動画を見る 

「二次不等式の解の条件②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の2次方程式がただ1つの共通な実数解をもつような定数$k$の値を求めよ。
また、その共通会を求めよ。
$x^2+(k-4)x-2=0$ ・・・①
$x^2-2x-k=0$ ・・・②

次の問いに答えよ。
(1)
すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(2)
すべての実数$x$について不等式$(k-2)x^2-2(k-1)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。

(3)
2次不等式$x^2-kx+k+3 \leqq 0$を満たす実数$x$が存在するような定数$k$の値の範囲を求めよ。

(4)
$x \geqq 2$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。

(5)
$-2 \leqq x \leqq 0$を満たすすべての実数$x$について、2次不等式$x^2-2kx-3k+4 \geqq 0$が成り立つような$k$の範囲を求めよ。
この動画を見る 

「二次不等式の解の条件①」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)すべての実数$x$について、2次不等式$x^2-2kx-3k+4 \gt 0$が成り立つような$k$の値の範囲を求めよ。
(2)すべての実数$x$について、不等式$(k-2)x^2-2(k-I)x+3k-5 \geqq 0$が成り立つような$k$の値の範囲を求めよ。
この動画を見る 

「二次方程式の解と共通解」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x$についての方程式$(k-1)x^2+2(k+3)x+k+6=0$の実数解がただ1つであるような定数$k$の値と、その時の実数解を求めよ。
この動画を見る 

平方根の方程式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式を解け.$x$は正の実数である.

$x+\sqrt{x(x+1)}+\sqrt{x(x+2)}+$
$\sqrt{(x+1)(x+2)}=2$
この動画を見る 

「二次方程式の判別式(解の個数)」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。

2次方程式$x^2+(2k-1)x+k^2+1=0$について以下の問いに答えよ。
(1)実数解をもつような$k$の値の範囲を求めよ。
(2)重解をもつような$k$の値と、重解を求めよ。

以下の問いに答えよ。
(1)2次方程式$y=2kx-k+2$が$x$軸と接するような定数$k$の値と接点を求めよ。
(2)2次方程式$y=x^2+kx-2k+3$が$x$軸と異なる2つの共有点をもつような定数$k$の値の範囲を求めよ。
(3)2次関数$y=2x^2+1$と直線$y=-2x+3k$が共有点をもつような定数$k$の値の範囲を求めよ。
(4)2次関数$y=x^2+4x+2k$のグラフが$x$軸から切り取る線分の長さが$3\sqrt{ 2 }$であるとき、定数$k$の値を求めよ。
この動画を見る 

【高校数学】2次関数の最大最小の応用~文章になるだけ~ 2-5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
幅20cmの金属板を、動画内の図のように、両端から等しい長さだけ直角に折り曲げて、
断面が長方形状の水路を作る。
このとき、断面積が最大になるようにするためには、端から何cmのところで折り曲げれば
よいか。また、その断面積の最大値を求めよ。


2⃣
直角を挟む2辺の長さの和が8である直角三角形のうち、斜辺の長さが 最小である直角三角形
の3辺の長さを求めよ。
この動画を見る 

2021 ガウス記号

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(45+\sqrt{2021})^{2021}]$の$1$の位の数を求めよ.
この動画を見る 

3乗根の大小

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{26}$と$\sqrt[3]{28}$では,どちらが$3$に近いか.
この動画を見る 

「二次不等式の計算】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の2次方程式を解け。
(1)$x^2-6x-72 \gt 0$
(2)$x^2-3x+1 \leqq 0$
(3)$-x^2+2x+1 \lt 0$
(4)$x^2+2x+5 \gt 0$
(5)$x^2+2x+5 \lt 0$
(6)$x^2+2x+5 \geqq 0$
(7)$x^2+2x+5 \leqq 0$
(8)$x^2-6x+9 \gt 0$
(9)$x^2-6x+9 \lt 0$
(10)$x^2-6x+9 \geqq 0$
(11)$x^2-6x+9 \leqq 0$


2次不等式$ax^2+bx+6 \lt 0$の解が次のようになるときの定数$a,b$の値を求めよ。
(1)$2 \lt x \lt 3$
(2)$x \lt -3,4 \lt x$
この動画を見る 

横浜市立大(医)3次方程式の虚数解の絶対値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$である.

(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.

横浜市立(医)過去問
この動画を見る 

佐賀大 数列のの不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.

(1)$n!\geqq 2^{n-1}$を示せ.
(2)$\displaystyle \sum_{k=0}^n \dfrac{1}{k!}\lt 3$を示せ.

佐賀大過去問
この動画を見る 

「二次関数の最大最小 場合分け③】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最大値$M(a)$を求めよ。
(3)$y=m(a)$のグラフをかけ。
(4)$y=M(a)$のグラフをかけ。


$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq 1)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$k=m(a)$のグラフをかけ。
(4)$K=M(a)$のグラフをかけ。


2次関数$f(x)=x^2-4x+3(a \leqq x \leqq a+2)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$t=m(a)$のグラフをかけ。
(4)$T=M(a)$のグラフをかけ。
この動画を見る 

「二次関数の最大最小 場合分け②】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a \gt b0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(3)$k=m(a)$のグラフをかけ。

$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq a)$について
(4)$K=M(a)$のグラフをかけ。
この動画を見る 

三重大 対数と二次関数

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha \gt 0$とする.
$f(x)=\log_3 \left(-\dfrac{1}{2}x^2+\dfrac{1}{2}\alpha x+9 \right)$

$f(x)$が整数となる$x$が$0\leqq x\leqq \alpha$の範囲でちょうど$6$個あるような$\alpha$の範囲を求めよ.

三重大過去問
この動画を見る 

「二次関数の最大最小 場合分け①】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。

2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(2)$f(x)$の最大値$M(a)$を求めよ。

2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(3)$y=m(a)$のグラフをかけ。
この動画を見る 

【高校数学】2次関数の最大最小例題~定義域の両方に文字~ 2-4.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=-x^2+4x+5(a \leqq x \leqq a+2)$について、

(1) 最大値を求めよ

(2) 最小値を求めよ
この動画を見る 

「二次関数の最大最小②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)$y=(x^2-6x)^2+2(x^2-6x)-1$の最小値を求めよ。
(2)$y=(x^2-6x)^2+2(x^2-6x)-1(1 \leqq x \leqq 4)$の最大値と最小値を求めよ。
(3)$x \geqq 0,y \geqq 0x+y=1$のとき、$3x^2+y^2$の最大値と最小値を求めよ。
(4)実数$x,y$について$P=x^2+3y^2-2x+10y+4$の最小値を求めよ。
(5)実数$x,y$について$P=x^2-2xy+3y^2-2x+10y+4$の最小値を求めよ。
この動画を見る 

素因数分解せよ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$11^3+397$を素因数分解せよ.
この動画を見る 

名古屋市立(医)不等式の証明

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数である.

(1)$\sqrt2$は$\dfrac{b}{a}$と$\dfrac{2a+b}{a+b}$の間にある.

(2)$\sqrt2$は$\dfrac{b}{a}$と$\dfrac{2a+b}{a+b}$どちらに近いか.

1966名古屋市立(医)
この動画を見る 

「二次関数の最大最小①」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)関数$f(x)=2x^2-4x+c(-1 \leqq x \leqq 4)$の最大値が$7$となるような$c$の値を求めよ。
(2)関数$f(x)=ax^2-2ax+b(-1 \leqq x \leqq 2)$の最大値が$5$、最小値が$1$となるような$a,b$の値を求めよ。

2次関数$f(x)=x^2+2ax+2a-1(-2 \leqq x \leqq 3)$について、$a$の値が変化するときの最小値を$m(a)$とするとき、$m(a)$の最大値を求めよ。
この動画を見る 

富山大(医) 無理数の証明

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は異なる素数であり,$k,m,n$は整数である.
$k+m\sqrt p+n\sqrt q=0$なら,$k=m=n=0$を示せ.

(1)$\sqrt p$が無理数であることを示せ.

2016富山大(医)
この動画を見る 

「二次関数の決定」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の条件を満たす2次関数を求めよ。
(1)頂点が$(1,3)$で、点$(2,5)$を通る。
(2)軸が直線$x=2$で、2点$(0,-1),(-1,-6)$を通る。
(3)3点$(1,6),(-2,-9),(4,3)$を通る。
(4)3点$(-2,0),(3,0),(1,-12)$を通る。
(5)$y=2x^2$を平行移動したグラフで、点$(2,3)$を通り、頂点が直線$y=2x-1$上にある。
この動画を見る 

「二次関数の平行移動・対称移動」全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$y=2x^2-4x+5$ ・・・①について
$y=2x^2-4x+5$
$\ =2(x^2-2x)+5$
$\ 2\{(x-1)^2-1\}+5$
$\ 2(x-1)^2+3$
であるから、頂点$(1,3)$となる。 ・・・②

(1)
①を$x$軸方向に$3,y$軸方向に$-4$平行移動して得られるグラフの方程式を求めよ。

(2)
①のグラフを$x$軸に関して対称移動させた関数の方程式を求めよ。

(3)
①のグラフを$y$軸に関して対称移動させた関数の方程式を求めよ。

(4)
①のグラフを原点に関して対称移動させた関数の方程式を求めよ。

(5)
$x$軸方向に$1,y$軸方向に$-2$平行移動して、$x$軸に関して対称移動させたグラフの方程式が①になるようなグラフの方程式を求めよ。

(6)
任意の実数$k$について2次関数$y=3x^2+kx-2k+1$のグラフは、ある定点を通る。
その定点の座標を求めよ。
この動画を見る 

【二次関数の平行移動・対称移動】を宇宙一わかりやすく【高校数学ⅠA】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
【高校数学ⅠA】二次関数の平行移動・対称移動についての解説動画です
この動画を見る 

【高校数学】2次関数の最大最小例題~放物線の軸に文字~ 2-4.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数$y=x^2-2ax+4(0 \leqq x \leqq 3)$について

(1) 最小値を求めよ

(2) 最大値を求めよ
この動画を見る 

東大 三角比と漸化式

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sin^2\dfrac{\pi}{5}$であり,$b=\sin^2\dfrac{2\pi}{5}$である.

(1)$a+b,ab$は有理数であることを示せ.
(2)$(a^{-n}+b^{-n})(a+b)^n$は整数であることを示せ.($n$は自然数)

1994東大過去問
この動画を見る 

「対偶法と背理法の証明②」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(3)
$\sqrt{ 2 }$が無理数であることを用いて$3-\sqrt{ 2 }$が無理数であることを示せ。

(4)
$\sqrt{ 6 }$が無理数であることを用いて$\sqrt{ 3 }-\sqrt{ 2 }$が無理数であることを示せ。

(5)
(ⅰ)$n^2$が$3$の倍数ならば、$n$が$3$の倍数であることを示せ。
(ⅱ)$\sqrt{ 3 }$が無理数であることを示せ。
この動画を見る 

県立広島大 ガウス記号を含む二次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の方程式を解け.
$[x^2+6x-4]=10x$

県立広島大過去問
この動画を見る 

対偶法と背理法の証明の全パターン①【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$mn$が偶数ならば、$m,n$のうち少なくとも1つは偶数であることを示せ。
ただし、$m,n$は整数とする。

(2)
$\sqrt{ 2 }$が無理数であることを示せ。
この動画を見る 
PAGE TOP