数Ⅰ - 質問解決D.B.(データベース) - Page 7

数Ⅰ

【シンプルに大切…!】文字式:埼玉県~全国入試問題解法

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)#埼玉県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x=\sqrt{2}+1,y=\sqrt{2}-1のとき、$
$xy-x-y+1の値を求めなさい。$
この動画を見る 

【数Ⅰ】【数と式】1次不等式の利用2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個800円の品物がある。入会金500円を払って会員になると、この品物を6%引きで買うことができる。入会して品物を買う場合、何個以上買えば入会しないで買うより安くなるか。ただし、消費税は考えないものとする。

13%と5%の食塩水を混ぜて400gの食塩水を作った。その濃度が10%以上であるとき、混ぜた5%の食塩水は何g以下か。

ある高等学校の1年全員が長いすに座っていくとき、1脚に6人ずつ座っていくと15人が座れなくなる。また、1脚に7人ずつ座っていくと、使わない長いすが3脚できる。長いすの数は何脚以上何脚以下か。
この動画を見る 

【数Ⅰ】【数と式】1次不等式の利用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のものを求めよ。
(1)不等式5(x-3)<-2(x-14)を満たす最大の整数x
(2)不等式x/2+4/3≧x-2/3を満たす自然数xの個数

不等式2x-3>a+8xについて、次の問いに答えよ。
(1)解がx<1となるように、定数aの値を定めよ。
(2)解がx=0を含むように、定数aの値の範囲を定めよ。
(3)この不等式を満たすxのうち、最大の整数が0となるように、定数aの値の範囲を定めよ。

aを定数とするとき、次の方程式、不等式を解け。
(1)ax=1
(2)ax≦2
(3)ax+6>3x+2a
この動画を見る 

【数Ⅰ】【数と式】根号を含む計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}}{\sqrt{2}-1}$の整数部分をa、小数部分をbとする。

次の式の値を求めよ。
(1)$a$ (2)$b$ (3)$a+b+b^2$


次の各場合について、$\sqrt{x^2-10x+25}$ をxの多項式で表せ。
(1)x≧5 (2)x<5
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は正の定数とする。関数$y=x^2-2x-1~~(0\leqq x \leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線y=2x²-4x+1を、直線y=-2に関して対称移動して得られる放物線の方程式を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の直線、放物線を、x軸、y軸、原点に関して、それぞれ対称移動して得られる直線、放物線の方程式を求めよ。
(1)y=-x+1
(2)y=2x²+x
(3)y=-x²-x-6
この動画を見る 

【数Ⅰ】【2次関数】2次関数の平行移動4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-4x+3$を、次の方向に平行移動して原点を通るようにした放物線の方程式を求めよ。
(1)y軸方向
(2)x軸方向
この動画を見る 

【数Ⅰ】【2次関数】2次関数の平行移動3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の放物線をx軸方向に1、y軸方向に-2だけ平行移動して得られる放物線の方程式を求めよ。
(1)$y=-x^2$
(2)$y=2x^2+4x$
(3)$y=3x^2+x-4$
この動画を見る 

【数Ⅰ】【2次関数】2次関数の平行移動2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=x^2-4x+4$は、どのように平行移動すると放物線$y=x^2+2x-1$に重なるか。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の平行移動1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線$y=-3x^2$を、頂点が次の点になるように平行移動するとき、移動後の放物線の方程式を求めよ。
(1)$(1,2)$
(2)$(-2,3)$
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数$y=-x^2+4ax-2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最大値を求めよ。
(2) 最小値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=-x^2+4ax-2~~(0\leqq x \leqq 2)$について、次の問いに答えよ。
(1) 最大値を求めよ。
(2) 最小値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数$y=3x^2-6ax+2 (0\leqq x\leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=3x²-6ax+2~~(0\leqq x \leqq 2)$について、次の問いに答えよ。
(1) 最小値を求めよ。
(2) 最大値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。関数$y=x^2-2x-1 (0\leqq x\leqq a)$について、次の問いに答えよ。
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る 

【普通に難問?でも悪問…!】文字式:お茶の水女子大学附属高等学校~全国入試問題解法

単元: #数学(中学生)#中1数学#方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)#お茶の水女子大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$次の式をcについて解きなさい。$
$\dfrac{a(c-d)}{c+d}+\dfrac{b(c+d)}{c-d}=a+b$
この動画を見る 

【数Ⅰ】【図形と計量】三角比の相互関係式の使い方2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sin\theta-\cos\theta$を$\sin\theta$だけを用いた式で表せ。また,$\cos\theta$だけを用いた式で表せ。
この動画を見る 

【数Ⅰ】【図形と計量】三角比の相互関係式の使い方1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1)$ (\sin\theta+\cos\theta)²+(\sin\theta-\cos\theta)²$
(2) $(1-\sin\theta)(1+\sin\theta)-\frac{1}{1+\tan^2\theta}$
この動画を見る 

【数Ⅰ】【図形と計量】有名角以外を含む三角比の計算 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1) $\sin^2 40°+\sin^2 50°$
(2) $\tan35°\tan55°+\tan15°\tan75°$
(3) $(\sin70°+\sin20°)^2-2\tan70°\cos^2 50°$
この動画を見る 

【数Ⅰ】【データの分析】変量変換1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータの平均値$\bar{x}$が35、分散$S_{x}^2$が16であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$\bar{y}$,分散$S_{y}^2$,標準偏差$S_{y}$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\frac{1}{2}x+6$

あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
この動画を見る 

【数Ⅰ】【データの分析】変量変換2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量$\mathit{x}$のデータが次のように与えられている。
672, 693, 644, 665, 630, 644
$\mathit{c}=7 , \mathit{x}_{0}=644 ,\mathit{u}=\frac{x-x₀}{c}$として新たな変量$\mathit{u}$を作る。
(1)変量$\mathit{u}$のデータの平均値、分散、標準偏差を求めよ。
(2)変量$\mathit{x}$のデータの平均値、分散、標準偏差を求めよ。
この動画を見る 

【数Ⅰ】【データの分析】平均と分散だけ与えられたデータ ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
20個の値からなるデータがあり、そのうちの8個の値の平均値は3,分散は4、残りの12個の値の平均値は8、分散は9である。
(1)このデータの平均値を求めよ。
(2)このデータの分散を求めよ
この動画を見る 

【数Ⅰ】【データの分析】データが変更されたときの平均、分散の関係 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある6人について、懸垂が何回できたかを記録したものである。
14 11 10 18 16 9(単位は回)
(1) このデータの平均値を求めよ。
(2) このデータには記録ミスがあり、18回は正しくは17回、9回は正しくは10回であった。この誤りを修正した時、このデータの平均値、分散は、修正前から増加するか、減少するか、変化しないかを答えよ。
(3)(2)の修正後、他の1人の生徒について同じように懸垂の記録を取ったところ、13回であった。この生徒を加えた7人のデータの分散は、加える前と比較して増加するか、減少するか、変化しないかを答えよ。
この動画を見る 

100個の絶対値の合計!?どう解く? #Shorts #ずんだもん #勉強

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nが整数であるとき、S=|n-1|+|n-2|+・・・+|n-100|の最小値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】条件付きの解 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)2次関数$y=x^2+mx+1$において、$y$の値が常に正常である。
(2) 放物線$y=x^2+2mx+3m-2$が$y<0$の部分を通らない。
(3) 関数$y=mx^2+4x+m-3$において、$y$の値が常に負である。

2次関数$y=x^2-mx+m+3$のグラフの頂点が第1象限にあるとき、定数$m$の値の範囲を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】2次関数 解の個数、連立 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$m$は定数とする。放物線$y=x^2+(m+3)x+3m+4$と$x$軸の共有点の個数を調べよ。

次の2次不等式の解がすべての実数であるとき、定数$m$の値の範囲を求めよ。
(1)$x^2-mx+1>0$(2)$x^2+mx+2m\leqq0$

次の連立不等式を満たす整数$x$の値を全て求めよ。
\begin{eqnarray}
(1)\left\{
\begin{array}{l}
2x^2-x-3<0\\
3x^2-10x+3<0
\end{array}
\right.
(2)\left\{
\begin{array}{l}
x^2+2x>1\\
x^2-x\leqq6
\end{array}
\right.
\end{eqnarray}
この動画を見る 

【数Ⅰ】【2次関数】解の範囲 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の方程式が実数解をもつように、実数 $m$ の値の範囲を定めよ。
$(1)\, x^2+2mx+3=0$
$(2)\, x^2+mx+m=0$

問題2
2次方程式 $x^2-2mx-4m=0$ が次の条件を満たすように、定数 $m$ の値の範囲を定めよ。
$(1)$ 異なる2つの実数解をもつ
$(2)$ 実数解をもたない

問題3
次の条件を満たすように、実数 $m$ の値の範囲を定めよ。
$(1)$ 2次関数 $y=x^2-2mx+2m+3$ のグラフが $x$ 軸と共有点をもつ
$(2)$ 2次関数 $y=x^2+2mx-m+2$ のグラフが $x$ 軸と共有点をもたない
この動画を見る 

【数Ⅰ】【2次関数】点の通過 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の条件を満たす放物線の方程式を求めよ。
$(1)$ 3点 $(-4,0), \, (-2,0), \, (0,-4)$ を通る。
$(2)$ 点 $(2,0)$ で $x$ 軸に接し、点 $(-2,12)$ を通る。

問題2
$a, \, b, \, c$ の値を入力すると、関数 $y=ax^2+bx+c$ のグラフが表示されるコンピュータソフトがある。ある $a, \, b, \, c$ の値を入力すると、グラフは図のように表示された (図は動画参照)。
$(1)$ $a, \, b, \, c, \, b^2-4ac, \, a+b+c$ の符号をいえ。
$(2)$ この $a, \, b$ の値を変えずに、$c$ の値だけを変化させたとき、変わらないものを次の中からすべて選べ。また、変わらない理由を説明せよ。
① グラフと $x$ 軸の共有点の個数
② グラフの頂点の $x$ 座標の符号
③ グラフの頂点の $y$ 座標の符号
この動画を見る 
PAGE TOP