数Ⅰ

正方形と平行四辺形 どっちが大きい?

単元:
#数Ⅰ#図形と計量#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積を比べたとき大きいのはどっち?
*マッチ棒は同じ
A.正方形
B.平行四辺形
C.同じ
*図は動画内参照
この動画を見る
面積を比べたとき大きいのはどっち?
*マッチ棒は同じ
A.正方形
B.平行四辺形
C.同じ
*図は動画内参照
【データの分析②】共通テスト数学に向けて1週間でサクッと復習!【箱ひげ図】#データの分析 #箱ひげ図 #高校数学 #shorts

15度75度90度の直角三角形の比

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
x:y:z=?
*図は動画内参照
この動画を見る
x:y:z=?
*図は動画内参照
【データの分析①】共通テスト数学に向けて1週間でサクッと復習!【中央値、四分位数】#データの分析 #中央値 #四分位数 #shorts

連立方程式

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2024 \\
x^3+y^3=1927
\end{array}
\right.
\end{eqnarray}$
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
(1+x)(1+y)(x+y)=2024 \\
x^3+y^3=1927
\end{array}
\right.
\end{eqnarray}$
連立方程式

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{cases}
(1+x)(1+y)(x+y) =2024 \\
x^3 +y^3 =1927
\end{cases}
$
$x+y=?$
この動画を見る
$
\begin{cases}
(1+x)(1+y)(x+y) =2024 \\
x^3 +y^3 =1927
\end{cases}
$
$x+y=?$
因数分解せよ 慶應志木

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
(x+3)(x+2y+3)+2y-1
慶應義塾志木高等学校
この動画を見る
因数分解せよ
(x+3)(x+2y+3)+2y-1
慶應義塾志木高等学校
福田の数学〜単なる不等式の問題と思ったら大間違い〜慶應義塾大学2023年環境情報学部第1問(2)〜有理数と不等式

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正の整数$m$と$n$は、不等式
$\frac{2022}{2023}<\frac{m}{n}<\frac{2023}{2024}$
を満たしている。このような分数$\frac{m}{n}$の中で$n$が最小のものを求めよ。
2023慶應義塾大学環境情報学部過去問
この動画を見る
正の整数$m$と$n$は、不等式
$\frac{2022}{2023}<\frac{m}{n}<\frac{2023}{2024}$
を満たしている。このような分数$\frac{m}{n}$の中で$n$が最小のものを求めよ。
2023慶應義塾大学環境情報学部過去問
3通りで解説!!因数分解 日比谷高校

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$(6-x)^2+9(x-6)-90$
日比谷高等学校
この動画を見る
因数分解せよ
$(6-x)^2+9(x-6)-90$
日比谷高等学校
4次方程式

気付けば一瞬!!おうぎ形

因数分解

灘高校の因数分解

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
展開せよ
$(a^2+b^2-c^2)^2$
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$
灘高等学校
この動画を見る
展開せよ
$(a^2+b^2-c^2)^2$
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$
灘高等学校
因数分解 城西大附属川越

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2+xy-2y^2-3x+12y-18$
城西大学付属川越高等学校
この動画を見る
因数分解せよ
$x^2+xy-2y^2-3x+12y-18$
城西大学付属川越高等学校
ガウス記号!これは取りたい!【早稲田大学】【数学 入試問題】

単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の等式を満たす最大の整数aは、a=?である。
[$\displaystyle \frac{a}{2}$]+[$\displaystyle \frac{2a}{3}$]=a
但し、実数xに対して、$\lbrack x \rbrack$は、x以下の最大の整数を表す。
早稲田大過去問
この動画を見る
次の等式を満たす最大の整数aは、a=?である。
[$\displaystyle \frac{a}{2}$]+[$\displaystyle \frac{2a}{3}$]=a
但し、実数xに対して、$\lbrack x \rbrack$は、x以下の最大の整数を表す。
早稲田大過去問
因数分解 國学院久我山

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
因数分解せよ
$4(2x+ \frac{y}{2})^2 - 4( \frac{x}{2} - 2y)^2$
國學院大學久我山高等学校
この動画を見る
因数分解せよ
$4(2x+ \frac{y}{2})^2 - 4( \frac{x}{2} - 2y)^2$
國學院大學久我山高等学校
これだけでわかるの?面積が大きいのはどっち?

単元:
#数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積が大きいのは長方形 or 正方形
*図は動画内参照
この動画を見る
面積が大きいのは長方形 or 正方形
*図は動画内参照
素因数分解

福田の数学〜三角形の面積をxで表したいが〜慶應義塾大学2023年商学部第1問(3)〜三角比の図形への応用

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
( 3 ) I 辺の長さが 2 の正四面体 ABCD において、辺 BD の中点を M 、辺 CD の中点を N とする。また、辺 AD 上に点 L を定め、 DL =xとする。このとき、$\triangle LMN$の面積が$\triangle ABC$の面積の$dfrac{1}{3}$になるのは$x=\dfrac{\fbox{ケ}}{\fbox{コ}}+\dfrac{\sqrt{\fbox{サシ}}}{ス}$のときである。
2023慶應義塾大学商学部過去問
この動画を見る
( 3 ) I 辺の長さが 2 の正四面体 ABCD において、辺 BD の中点を M 、辺 CD の中点を N とする。また、辺 AD 上に点 L を定め、 DL =xとする。このとき、$\triangle LMN$の面積が$\triangle ABC$の面積の$dfrac{1}{3}$になるのは$x=\dfrac{\fbox{ケ}}{\fbox{コ}}+\dfrac{\sqrt{\fbox{サシ}}}{ス}$のときである。
2023慶應義塾大学商学部過去問
正方形と2つの正三角形

気付けば一瞬!!半円と円 解説した後に気付いてしまった。。。

ルートと整数 大阪星光学院

単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$n^2-2n-1 < \sqrt{50} <n^2-2n+1 $
を満たす整数nをすべて求めよ。
大阪星光学院高等学校
この動画を見る
$n^2-2n-1 < \sqrt{50} <n^2-2n+1 $
を満たす整数nをすべて求めよ。
大阪星光学院高等学校
ミスリードに気をつけろ!久留米大(医)

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$\displaystyle \frac{3}{2\sqrt13-7}$
整数部分と小数部分を求めよ
(2)$\displaystyle \frac{2}{a-\sqrt7}$
整数部分が5である。整数aを求めよ
久留米大(医)過去問
この動画を見る
(1)$\displaystyle \frac{3}{2\sqrt13-7}$
整数部分と小数部分を求めよ
(2)$\displaystyle \frac{2}{a-\sqrt7}$
整数部分が5である。整数aを求めよ
久留米大(医)過去問
式の値 四天王寺

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{1010^2+990^2}{111^2-89^2}$
四天王寺高等学校
この動画を見る
$\frac{1010^2+990^2}{111^2-89^2}$
四天王寺高等学校
正か負かゼロか 函館ラ・サール 予告問題、分母足し算でなく、引き算でした🙇

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x=\sqrt{2023}$のとき
$x^2-89x+1980$の値について正しいのは?
①符号は正である
②符号は負である
③0である
函館ラ・サール高等学校
この動画を見る
$x=\sqrt{2023}$のとき
$x^2-89x+1980$の値について正しいのは?
①符号は正である
②符号は負である
③0である
函館ラ・サール高等学校
福田の数学〜三角比の基本の復習にどうぞ〜慶應義塾大学2023年経済学部第1問(1)〜三角形と外接円内接円の半径

単元:
#数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。
2023慶應義塾大学経済学部過去問
この動画を見る
(1)$\triangle ABC$において
$sinA:sinB:sinC=3:7:8$
が成り立つとき、ある性の実数kを用いて
$a=\fbox{ア}k,b=\fbox{イ}k,c=\fbox{ウ}k$
と表すことができるので、この三角形の最も大きい角の余弦の値は$-\dfrac{\fbox{エ}}{\fbox{オ}}$であり、正弦の値は$-\fbox{カ}\sqrt{\fbox{キ}}$である。さらに$\triangle ABC$の面積が$54\sqrt{3}$であるとき、$k=\fbox{ク}$となるので、この三角形の外接円の半径は$\fbox{ケ}\sqrt{\fbox{コ}}$であり、内接円の半径は$\fbox{サ}\sqrt{\fbox{シ}}$である。
2023慶應義塾大学経済学部過去問
🌈🌈🌈

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。
2023明治大学理工学部過去問
この動画を見る
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。
2023明治大学理工学部過去問
5つの正方形

正方形と円
