数A
整数問題 基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$7^m=5^n+24$を満たす整数(m,n)を求めよ.
この動画を見る
$7^m=5^n+24$を満たす整数(m,n)を求めよ.
福田の1.5倍速演習〜合格する重要問題028〜九州大学2016年度文理共通問題〜余りと合同式
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#茨城大学
指導講師:
福田次郎
問題文全文(内容文):
自然数nに対して、$10^n$を13で割った余りを$a_n$とおく。$a_n$は0から12まで
の整数である。以下の問いに答えよ。
(1)$a_{n+1}$は$10a_n$を13で割った余りに等しいことを示せ。
(2)$a_1,a_2,a_3,\cdots,a_6$を求めよ。
(3)以下の3条件を満たす自然数Nをすべて求めよ。
$(\textrm{i})N$を十進法で表示した時6桁となる。
$(\textrm{ii})N$を十進法で表示して、最初と最後の桁の数字を取り除くと
2016となる。
$(\textrm{iii})N$は13で割り切れる。
2016九州大学文理過去問
この動画を見る
自然数nに対して、$10^n$を13で割った余りを$a_n$とおく。$a_n$は0から12まで
の整数である。以下の問いに答えよ。
(1)$a_{n+1}$は$10a_n$を13で割った余りに等しいことを示せ。
(2)$a_1,a_2,a_3,\cdots,a_6$を求めよ。
(3)以下の3条件を満たす自然数Nをすべて求めよ。
$(\textrm{i})N$を十進法で表示した時6桁となる。
$(\textrm{ii})N$を十進法で表示して、最初と最後の桁の数字を取り除くと
2016となる。
$(\textrm{iii})N$は13で割り切れる。
2016九州大学文理過去問
素数問題
書き出す訳にはいかないんだ。そんな時間ないんだ。ではどうする? 白陵高校
単元:
#数学(中学生)#数A#場合の数と確率#場合の数#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
異なる12冊の本から2冊以上の本を選びたい。
選ぶ方法は何通り?
白陵高等学校
この動画を見る
異なる12冊の本から2冊以上の本を選びたい。
選ぶ方法は何通り?
白陵高等学校
気付けば一瞬!!円と正方形
【保存版】こんな簡単にでるん?
福田の1.5倍速演習〜合格する重要問題023〜名古屋大学2016年度理系数学第3問〜確率漸化式
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師:
福田次郎
問題文全文(内容文):
玉が2個ずつ入った2つの袋A,Bがあるとき、袋Bから玉を1個取り出して
袋Aに入れ、次に袋Aから玉を1個取り出して袋Bに入れる。という操作を
1回の操作と数えることにする。Aに赤玉が2個、Bに白玉が2個入った状態から
始め、この操作をn回繰り返した後に袋Bに入っている赤玉の個数がk個で
ある確率を$P_n(k)(n=1,2,3,\cdots)$とする。このとき、次の問いに答えよ。
(1)$k=0,1,2$に対する$P_1(k)$を求めよ。
(2)$k=0,1,2$に対する$P_n(k)$を求めよ。
2016名古屋大学理系過去問
この動画を見る
玉が2個ずつ入った2つの袋A,Bがあるとき、袋Bから玉を1個取り出して
袋Aに入れ、次に袋Aから玉を1個取り出して袋Bに入れる。という操作を
1回の操作と数えることにする。Aに赤玉が2個、Bに白玉が2個入った状態から
始め、この操作をn回繰り返した後に袋Bに入っている赤玉の個数がk個で
ある確率を$P_n(k)(n=1,2,3,\cdots)$とする。このとき、次の問いに答えよ。
(1)$k=0,1,2$に対する$P_1(k)$を求めよ。
(2)$k=0,1,2$に対する$P_n(k)$を求めよ。
2016名古屋大学理系過去問
早稲田高等学院 高校入試に九九!?
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
九九の表の81個の数の積を素因数分解せよ.
早稲田高等学院過去問
この動画を見る
九九の表の81個の数の積を素因数分解せよ.
早稲田高等学院過去問
正方形の中にある直角三角形の面積
福田の1.5倍速演習〜合格する重要問題019〜東京工業大学2016年度理系数学第4問〜整数に関する論証
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
nを2以上の自然数とする。
(1)nが素数または4のとき、$(n-1)!$はnで割り切れないことを示せ。
(2)nが素数でなくかつ4でもないとき、$(n-1)!$はnで割り切れることを示せ。
2016東京工業大学理系過去問
この動画を見る
nを2以上の自然数とする。
(1)nが素数または4のとき、$(n-1)!$はnで割り切れないことを示せ。
(2)nが素数でなくかつ4でもないとき、$(n-1)!$はnで割り切れることを示せ。
2016東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題018〜東北大学2016年度文系数学第3問〜3変数の不定方程式
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
ある工場で作る部品A,B,Cはねじをそれぞれ7個、9個、12個使っている。
出荷後に残ったこれらの部品のねじを全て外したところ、ネジが全部で54個あった。
残った部品A,B,Cの個数をそれぞれl,m,nとして可能性のある組(l,m,n)を全て求めよ。
2016東北大学文系過去問
この動画を見る
ある工場で作る部品A,B,Cはねじをそれぞれ7個、9個、12個使っている。
出荷後に残ったこれらの部品のねじを全て外したところ、ネジが全部で54個あった。
残った部品A,B,Cの個数をそれぞれl,m,nとして可能性のある組(l,m,n)を全て求めよ。
2016東北大学文系過去問
高校入試にしては頑張った出題 愛光学園
単元:
#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{180-3n}$が整数となる最小の①自然数n②正の有理数nを求めよ.
愛光学園過去問
この動画を見る
$\sqrt{180-3n}$が整数となる最小の①自然数n②正の有理数nを求めよ.
愛光学園過去問
福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学的帰納法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
素数p,qを用いて
$p^q+q^p$
と表される素数を全て求めよ。
2016京都大学理系過去問
この動画を見る
素数p,qを用いて
$p^q+q^p$
と表される素数を全て求めよ。
2016京都大学理系過去問
合同式(mod)について6分で説明します【数学A】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
合同式(mod)について6分で説明します
この動画を見る
合同式(mod)について6分で説明します
円と長方形
福田の1.5倍速演習〜合格する重要問題011〜東京大学2015年度理系数学第5問〜コンビネーションの性質
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
mを2015以下の正の整数とする。
2015Cmが偶数となる最小のmを求めよ
2015東京大学理系過去問
この動画を見る
mを2015以下の正の整数とする。
2015Cmが偶数となる最小のmを求めよ
2015東京大学理系過去問
正六角形
数学オリンピック日本予選 合同式の基本
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割ったあまりを求めよ.
数学オリンピック過去問
この動画を見る
$1111^{2018}$を$11111$で割ったあまりを求めよ.
数学オリンピック過去問
気づけば一瞬!!円に内接する台形 香川県
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
四角形OBCDの周の長さは△AODの周の長さより何㎝長い?
*図は動画内参照
香川県
この動画を見る
四角形OBCDの周の長さは△AODの周の長さより何㎝長い?
*図は動画内参照
香川県
階乗の入った方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n!=n^2+11n+40$を満たす自然数nを求めよ.
この動画を見る
$n!=n^2+11n+40$を満たす自然数nを求めよ.
面積が最小となるとき
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#平面図形#角度と面積#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点Pは$\stackrel{\huge\frown}{AB}$上を動く
斜線部の面積が最小となるとき四角形OCPDの面積は?
*図は動画内参照
川端高校
この動画を見る
点Pは$\stackrel{\huge\frown}{AB}$上を動く
斜線部の面積が最小となるとき四角形OCPDの面積は?
*図は動画内参照
川端高校
福田の1.5倍速演習〜合格する重要問題005〜一橋大学2015年文系数学第1問〜互いに素な自然数の個数
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。
2015一橋大学文系過去問
この動画を見る
nを2以上の整数とする。n以下の正の整数のうち、nとの最大公約数が1と
なるものの個数をE(n)で表す。たとえば
$E(2)=1,E(3)=2,E(4)=2,...,E(10)=4, ...$
である。
(1)E(1024)を求めよ。
(2)E(2015)を求めよ。
(3)mを正の整数とし、pとqを異なる素数とする。$n=p^mq^mのとき\frac{E(n)}{n}\geqq\frac{1}{3}$
が成り立つことを示せ。
2015一橋大学文系過去問
座標平面と確率
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
2つのサイコロA,Bを投げ出た目をa,bとする。
△OAP=2となる確率は?
*図は動画内参照
この動画を見る
2つのサイコロA,Bを投げ出た目をa,bとする。
△OAP=2となる確率は?
*図は動画内参照
素数に関する問題 国学院高校
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$a^2-b^2$が素数のとき
a-b=?
(a,bはともに自然数で、a>b)
國學院高等学校
この動画を見る
$a^2-b^2$が素数のとき
a-b=?
(a,bはともに自然数で、a>b)
國學院高等学校
【ひとまず解答してみよう…!】整数:慶応義塾高等学校~全国入試問題解法
単元:
#数学(中学生)#整数の性質#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2つの自然数$m,n$は$2^m-1=(2n+1)(2n+3)$を満たす.
$m=6$のとき,$n$の値を求めよ.
慶應義塾高校過去問
この動画を見る
2つの自然数$m,n$は$2^m-1=(2n+1)(2n+3)$を満たす.
$m=6$のとき,$n$の値を求めよ.
慶應義塾高校過去問
福田の1.5倍速演習〜合格する重要問題003〜北海道大学2015年文系数学第4問〜隣り合う順列、隣り合わない順列
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
福田次郎
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプのカードを1列に並べる思考を考える。
(1)番号7のカードが4枚連続して並ぶ確率を求めよ。
(2)番号7のカードが2枚ずつ隣り合い、4枚連続しては並ばない確率を求めよ。
8人の人が一列に並ぶとき、
(1)A,B,Cの3人が連続して並ぶ場合の数を求めよ。
(2)A,B,Cの3人が隣りあわないように並ぶ場合の数を求めよ。
2015北海道大学文系過去問
この動画を見る
ジョーカーを除く1組52枚のトランプのカードを1列に並べる思考を考える。
(1)番号7のカードが4枚連続して並ぶ確率を求めよ。
(2)番号7のカードが2枚ずつ隣り合い、4枚連続しては並ばない確率を求めよ。
8人の人が一列に並ぶとき、
(1)A,B,Cの3人が連続して並ぶ場合の数を求めよ。
(2)A,B,Cの3人が隣りあわないように並ぶ場合の数を求めよ。
2015北海道大学文系過去問
京大の整数問題!〇〇に注目!【京都大学】【数学 入試問題】
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
二つの奇数$a,b$に対して,$m=11a+b,n=3a+b$とおく。$m,n$がともに平方数であることはないことを証明せよ。
京都大過去問
この動画を見る
二つの奇数$a,b$に対して,$m=11a+b,n=3a+b$とおく。$m,n$がともに平方数であることはないことを証明せよ。
京都大過去問
ナイスな整数問題だよ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+y^3+3xy=17$をみたす整数x,yの組をすべて求めよ.
この動画を見る
$x^3+y^3+3xy=17$をみたす整数x,yの組をすべて求めよ.
見た目は難問!?直角三角形に関する問題
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a+c+h = 4
b+d+h = 6
a+b+c+d =?
*図は動画内参照
この動画を見る
a+c+h = 4
b+d+h = 6
a+b+c+d =?
*図は動画内参照