数A
福田のわかった数学〜高校1年生077〜場合の数(16)道順(3)
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(16) 道順(3)\hspace{100pt}\\
AからBまでの最短経路は何通りあるか。(※図は動画参照)
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(16) 道順(3)\hspace{100pt}\\
AからBまでの最短経路は何通りあるか。(※図は動画参照)
\end{eqnarray}
コメント欄はありがたい 素晴らしい別解2つ
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
整数問題 基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
この動画を見る
$a+b+c$が$6$の倍数ならば$a^3+b^3+c^3$も$6$の倍数であることを示せ.
整数問題の良問
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m^2-3mn+4n^2=20$を満たす整数$m,n$は存在しない事を示せ.
この動画を見る
$m^2-3mn+4n^2=20$を満たす整数$m,n$は存在しない事を示せ.
空間上の3本の直線
単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
空間内の3本の直線l,m,nに対して、l⊥m、かつl⊥nならば、
常にm$/\!/$n
この動画を見る
空間内の3本の直線l,m,nに対して、l⊥m、かつl⊥nならば、
常にm$/\!/$n
慶應義塾高校 円
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円の半径=1
正方形ABCDの1辺=?
斜線部の面積=?
*図は動画内参照
慶應義塾高等学校
この動画を見る
円の半径=1
正方形ABCDの1辺=?
斜線部の面積=?
*図は動画内参照
慶應義塾高等学校
福田のわかった数学〜高校1年生076〜場合の数(15)道順(2)
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(15) 道順(2)\hspace{100pt}\\
AからBへの最短経路のうち2点C,Dを通らない経路は何通りあるか。\\
(※図は動画参照)
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(15) 道順(2)\hspace{100pt}\\
AからBへの最短経路のうち2点C,Dを通らない経路は何通りあるか。\\
(※図は動画参照)
\end{eqnarray}
超良問⁉️だと思う整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$a,n$をすべて求めよ.
$a^{n+1}-(a+1)^n=2001$
この動画を見る
自然数$a,n$をすべて求めよ.
$a^{n+1}-(a+1)^n=2001$
福田のわかった数学〜高校1年生075〜場合の数(14)道順(1)
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(14) 道順(1)\hspace{100pt}\\
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ\\
到達する最短経路は何通りあるか。
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(14) 道順(1)\hspace{100pt}\\
右の街路図(※動画参照)を点Aから出発して3回だけ曲がってBへ\\
到達する最短経路は何通りあるか。
\end{eqnarray}
指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$6^{2x-3}-217・6^{x-2}+36=0$
この動画を見る
これを解け.
$6^{2x-3}-217・6^{x-2}+36=0$
福田のわかった数学〜高校1年生074〜場合の数(13)整数解の個数
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(13) 整数解の個数\hspace{100pt}\\
次の条件を満たす整数の組(x,y,z,u)は何個あるか。\\
(1)x+y+z+u=10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0\\
(2)x+y+z+u=10, x \geqq 1, y \geqq 1, z \geqq 1, u \geqq 1\\
(3)x+y+z+u \leqq 10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(13) 整数解の個数\hspace{100pt}\\
次の条件を満たす整数の組(x,y,z,u)は何個あるか。\\
(1)x+y+z+u=10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0\\
(2)x+y+z+u=10, x \geqq 1, y \geqq 1, z \geqq 1, u \geqq 1\\
(3)x+y+z+u \leqq 10, x \geqq 0, y \geqq 0, z \geqq 0, u \geqq 0
\end{eqnarray}
整数問題の基本
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
自然数$a,b,n$をすべて求めよ.
$2^a+3^b=n^2$
この動画を見る
自然数$a,b,n$をすべて求めよ.
$2^a+3^b=n^2$
【除法はこれでマスター】整式の除法のやり方となんで必要なのかを解説!〔高校数学 数学〕
整数の基本問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ab+cd$が$a-c$の倍数ならば,
$ad+bc$も$a-c$の倍数であることを示せ.
$a,b,c,d$は自然数である.
この動画を見る
$ab+cd$が$a-c$の倍数ならば,
$ad+bc$も$a-c$の倍数であることを示せ.
$a,b,c,d$は自然数である.
福田のわかった数学〜高校1年生073〜場合の数(12)組み分け
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(12) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
& 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
& 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(12) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
& 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
& 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
ただの三次方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$(x-1)^3+(2x+3)^3=27x^3+8$
この動画を見る
これを解け.
$(x-1)^3+(2x+3)^3=27x^3+8$
福田のわかった数学〜高校1年生072〜場合の数(11)組み分け
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
& 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
& 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
& 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
& 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
〇〇を教えるときに注意していること
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
CH=?
*図は動画内参照
滝川高等学校
この動画を見る
CH=?
*図は動画内参照
滝川高等学校
変な指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$(x\gt 0)$
$x^x=\left(\dfrac{256}{625}\right)^{\frac{256}{625}}$
この動画を見る
これを解け.$(x\gt 0)$
$x^x=\left(\dfrac{256}{625}\right)^{\frac{256}{625}}$
福田のわかった数学〜高校1年生071〜場合の数(10)組み分け
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(10) 組み分け\hspace{50pt}\\
次のような分け方は何通りか。\\
(1)4人を2人ずつA,Bの2組に分けるとき\\
(2)4人を2人ずつの2組に分けるとき\\
(3)5人を3人、2人の2組に分けるとき\\
(4)6人を2人ずつの3組に分けるとき\\
(5)6人を3組に\\
(6)n人を3組に (n \geqq 3)\\
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(10) 組み分け\hspace{50pt}\\
次のような分け方は何通りか。\\
(1)4人を2人ずつA,Bの2組に分けるとき\\
(2)4人を2人ずつの2組に分けるとき\\
(3)5人を3人、2人の2組に分けるとき\\
(4)6人を2人ずつの3組に分けるとき\\
(5)6人を3組に\\
(6)n人を3組に (n \geqq 3)\\
\end{eqnarray}
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$m^2+1=2^n$
これを解け.
この動画を見る
$m,n$を整数とする.
$m^2+1=2^n$
これを解け.
福田のわかった数学〜高校1年生070〜場合の数(9)じゅず順列
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(9) じゅず順列\\
次のような玉で数珠を作る方法は何通りか。\\
(1)白玉1個、黄玉2個、赤玉4個\\
(2)白玉2個、黄玉2個、赤玉4個\\
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(9) じゅず順列\\
次のような玉で数珠を作る方法は何通りか。\\
(1)白玉1個、黄玉2個、赤玉4個\\
(2)白玉2個、黄玉2個、赤玉4個\\
\end{eqnarray}
良問だぜ!自画自賛
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
補助線引けるかな?
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
a:b=?
*図は動画内参照
川端高校
この動画を見る
a:b=?
*図は動画内参照
川端高校
座標平面上の角の二等分線
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
y=3nx
y=nx
*図は動画内参照
n=? (n>0)
慶應義塾高等学校
この動画を見る
y=3nx
y=nx
*図は動画内参照
n=? (n>0)
慶應義塾高等学校
九州大の過去問をパクって問題作ってみた
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^3+3b^3=7c^3$を満たす整数$(a,b,c)$の組をすべて求めよ.
この動画を見る
$a^3+3b^3=7c^3$を満たす整数$(a,b,c)$の組をすべて求めよ.
福田のわかった数学〜高校1年生069〜場合の数(8)円順列その2
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(8) 円順列(2)\\
次のような玉を円形に並べる方法は何通りか。\\
(1)白玉1個、黄玉2個、赤玉3個\\
(2)白玉2個、赤玉4個\\
(3)白玉2個、黄玉2個、赤玉2個
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(8) 円順列(2)\\
次のような玉を円形に並べる方法は何通りか。\\
(1)白玉1個、黄玉2個、赤玉3個\\
(2)白玉2個、赤玉4個\\
(3)白玉2個、黄玉2個、赤玉2個
\end{eqnarray}
高校入試の軌跡の問題
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
点Pは$\stackrel{\huge\frown}{AB}$上を動く。
BP=DPとなるように点Dを定めるとき点Dが動く長さは?
芝浦工業大学柏高等学校
この動画を見る
点Pは$\stackrel{\huge\frown}{AB}$上を動く。
BP=DPとなるように点Dを定めるとき点Dが動く長さは?
芝浦工業大学柏高等学校
指数方程式 解は1つではない
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^x・2^{\frac{6}{x}}=72$
この動画を見る
実数解を求めよ.
$3^x・2^{\frac{6}{x}}=72$
福田のわかった数学〜高校1年生068〜場合の数(7)円順列
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(7) 円順列\\
8人を図のように(1)円形のテーブル (2)正方形のテーブル (3)長方形のテーブルに並べる方法は\\
それぞれ何通りあるか。\\
(※図は動画参照)
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} 場合の数(7) 円順列\\
8人を図のように(1)円形のテーブル (2)正方形のテーブル (3)長方形のテーブルに並べる方法は\\
それぞれ何通りあるか。\\
(※図は動画参照)
\end{eqnarray}