数A
変わった指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\gt 0$である.これを解け.
(1)$x^x=\left(\dfrac{1}{2}\right)^{\frac{1}{2}}$
(2)$x^{x^6}=\sqrt2^{\sqrt2}$
この動画を見る
$x\gt 0$である.これを解け.
(1)$x^x=\left(\dfrac{1}{2}\right)^{\frac{1}{2}}$
(2)$x^{x^6}=\sqrt2^{\sqrt2}$
3の倍数はどれ? 大阪府 A
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
値がつねに3の倍数になるものはどれ?(n:自然数)
ア $n+3$
イ $3(n+1)$
ウ $\frac{1}{3}n$
エ $6n$
オ $2n^2+1$
大阪府
この動画を見る
値がつねに3の倍数になるものはどれ?(n:自然数)
ア $n+3$
イ $3(n+1)$
ウ $\frac{1}{3}n$
エ $6n$
オ $2n^2+1$
大阪府
福田の数学〜早稲田大学2021年商学部第1問(4)〜空間内の点の移動の場合の数
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)座標空間において、各座標が整数である6個の点P_0,P_1,P_2,P_3,P_4,P_5を、\\
次の条件を満たすように重複を許して選ぶ。\\
(\textrm{i}) P_0=(0,0,0)\\
(\textrm{ii}) P_kとP_{k+1}との距離は1 (k=0,1,2,3,4,5)\\
(\textrm{iii}) P_0とP_5との距離は1\\
\\
このとき、選び方の総数は\boxed{\ \ エ\ \ }通りである。
\end{eqnarray}
2021早稲田大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (4)座標空間において、各座標が整数である6個の点P_0,P_1,P_2,P_3,P_4,P_5を、\\
次の条件を満たすように重複を許して選ぶ。\\
(\textrm{i}) P_0=(0,0,0)\\
(\textrm{ii}) P_kとP_{k+1}との距離は1 (k=0,1,2,3,4,5)\\
(\textrm{iii}) P_0とP_5との距離は1\\
\\
このとき、選び方の総数は\boxed{\ \ エ\ \ }通りである。
\end{eqnarray}
2021早稲田大学商学部過去問
【数A】図形の性質:高3 5月K塾共通テスト 数学IA第5問
単元:
#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、$AB=3,AC=6,\angle BAC=90°$であるとき、$BC=(ア)\sqrt{(イ)}$である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、$CF=\dfrac{(エ)\sqrt{(オ)}}{(カ)}$とわかるから$\dfrac{BF}{FC}=\dfrac{(キ)}{(ク)}$である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、$\dfrac{BQ}{QD}=(ケ)$であり、△BFQの面積は$\dfrac{(コ)}{(サシ)}$である。また、△CPQの面積は$\dfrac{(ス)}{(セ)}$である。
この動画を見る
△ABCにおいて、$AB=3,AC=6,\angle BAC=90°$であるとき、$BC=(ア)\sqrt{(イ)}$である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、$CF=\dfrac{(エ)\sqrt{(オ)}}{(カ)}$とわかるから$\dfrac{BF}{FC}=\dfrac{(キ)}{(ク)}$である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、$\dfrac{BQ}{QD}=(ケ)$であり、△BFQの面積は$\dfrac{(コ)}{(サシ)}$である。また、△CPQの面積は$\dfrac{(ス)}{(セ)}$である。
【数A】整数の性質:高3 5月K塾共通テスト 数学IA第4問
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)168を素因数分解すると 168=(ア)^(イ)×3×(ウ) である。
よって、168の正の約数の個数は(エオ)個であり、AB=168かつ3≦A<Bを満たすA,Bの組は、全部で(カ)個である。
(2)正の整数nは正の約数の個数が6個であり、正の約数の総和が168であるとする。このような正の整数nのうち、異なる2つの素因数を持つものを求めよう。
nは異なる素数p,qを用いて、n=p^(キ)・q と表せる。
このとき、nの正の約数の総和は[ク]であるから、p=(ケ) であり、n=(コサ) である。
[ク]の解答群
0: (p+p²)q
1: (1+p+p²)q
2: (p+p²)(1+q)
3: (1+p+p²)(1+q)
4: (p+p²+p³)q
5: (1+p+p²+p³)q
6: (p+p²+p³)(1+q)
7: (1+p+p²+p³)(1+q)
(3)正の整数mは正の約数の個数が12個であり、正の約数の総和が624であるとする。このような正の整数mのうち、異なる3つの素因数を持つものは m=(シスセ) である。
この動画を見る
(1)168を素因数分解すると 168=(ア)^(イ)×3×(ウ) である。
よって、168の正の約数の個数は(エオ)個であり、AB=168かつ3≦A<Bを満たすA,Bの組は、全部で(カ)個である。
(2)正の整数nは正の約数の個数が6個であり、正の約数の総和が168であるとする。このような正の整数nのうち、異なる2つの素因数を持つものを求めよう。
nは異なる素数p,qを用いて、n=p^(キ)・q と表せる。
このとき、nの正の約数の総和は[ク]であるから、p=(ケ) であり、n=(コサ) である。
[ク]の解答群
0: (p+p²)q
1: (1+p+p²)q
2: (p+p²)(1+q)
3: (1+p+p²)(1+q)
4: (p+p²+p³)q
5: (1+p+p²+p³)q
6: (p+p²+p³)(1+q)
7: (1+p+p²+p³)(1+q)
(3)正の整数mは正の約数の個数が12個であり、正の約数の総和が624であるとする。このような正の整数mのうち、異なる3つの素因数を持つものは m=(シスセ) である。
【数A】確率:高3 5月K塾共通テスト 数学IA第3問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
ドーナッツの面積再び!!
福田のわかった数学〜高校1年生030〜ガウス記号を含んだ方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} ガウス記号を含む方程式\\
次の方程式を解け。\\
(1)[2x]^2=4 (2)[2x]=[x]
\end{eqnarray}
この動画を見る
\begin{eqnarray}
数学\textrm{I} ガウス記号を含む方程式\\
次の方程式を解け。\\
(1)[2x]^2=4 (2)[2x]=[x]
\end{eqnarray}
空間図形 垂直について 簡単だけど大切です。
単元:
#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$AD⊥△BCD$
直角である角は?
*図は動画内参照
2021静岡県
この動画を見る
$AD⊥△BCD$
直角である角は?
*図は動画内参照
2021静岡県
【理数個別の過去問解説】1978年度東京工業大学 数学 第2問解説
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
この動画を見る
a,b,cは1<a<b<cをみたす整数とし,(ab-1)(bc-1)(ca-1)はabcで割り切れるとする。このとき次の問に答えよう。
(1)ab+bc+ca-1はabcで割り切れることを示そう。
(2)a,b,cをすべて求めよう。
福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係
単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}
2021早稲田大学社会科学部過去問
【理数個別の過去問解説】1968年度東京工業大学 数学 第1問解説
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
不等式$ab+1≦abc≦bc+ca+ab+1$をみたす自然数a,b,cのすべての組を求めよう。ただ し、a>b>cとする。
この動画を見る
不等式$ab+1≦abc≦bc+ca+ab+1$をみたす自然数a,b,cのすべての組を求めよう。ただ し、a>b>cとする。
指数方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数解を求めよ.
$3^{2x^2-1}+2・3^{(x+1)^2}-5・3^{4(x+1)}=0$
この動画を見る
実数解を求めよ.
$3^{2x^2-1}+2・3^{(x+1)^2}-5・3^{4(x+1)}=0$
円の中に円。巣鴨 図形
単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB=10
斜線部の面積=?
*図は動画内参照
巣鴨高等学校
この動画を見る
AB=10
斜線部の面積=?
*図は動画内参照
巣鴨高等学校
気付けば一瞬!! 図形
【数A】整数の性質:φ関数(φ210とφ1050))
三角形の面積
【理数個別の過去問解説】1976年度東京工業大学 数学 第1問解説
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
この動画を見る
p(x)をxに関する3次式とする。$x^4$と$x^5$をp(x)で割った余りは等しくて、0ではないとする。
xの整式f(x)がp(x)で割り切れず、xf(x)はp(x)で割り切れるとき、 f(x)をp(x)で割った余りr(x)を求めよ。
ただし、r(x)の最高次係数は1となるものとする。
【数A】整数の性質:慶應義塾大学 1の位の数は?
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)$2^{100}$の一の位の数 字を求めよう。
(2)$3^{1000}$の一の位の数字を求めよう。
(3)$a=3^{33}$とするとき、$3^a$ の一の位の数字を求めよう。
この動画を見る
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)$2^{100}$の一の位の数 字を求めよう。
(2)$3^{1000}$の一の位の数字を求めよう。
(3)$a=3^{33}$とするとき、$3^a$ の一の位の数字を求めよう。
どう解く?
座標平面上の角度 2通りの解説
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle a=?$
$\angle b=?$
*図は動画内参照
この動画を見る
$\angle a=?$
$\angle b=?$
*図は動画内参照
【理数個別の過去問解説】2015年度京都大学 数学 文系第3問解説
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
この動画を見る
6個の点A,B,C,D,E,Fが右図のように長さ1の線分で結ばれているとする。
各線分 をそれぞれ独立に確率1/2で赤または黒で塗る。
赤く塗られた線分だけを通って 点Aから点Eにいたる経路がある場合はそのうちで最短のものの長さをXとする。 そのような経路がない場合はX=0とする。
このとき、n=0,2,4について、X=nとな る確率を求めよう。
福田の数学〜早稲田大学2021年教育学部第1問(4)〜箱に玉を入れる場合の数
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)箱が6個あり、1から6までの番号がついている。赤、黄、青それぞれ2個ずつ\\
合計6個の玉があり、ひとつの箱にひとつずつ玉を入れるとする。ただし、隣り合う\\
番号の箱には異なる色の玉が入るようにする。このような入れ方は全部で何通りある\\
かを求めよ。
\end{eqnarray}
2021早稲田大学教育学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} (4)箱が6個あり、1から6までの番号がついている。赤、黄、青それぞれ2個ずつ\\
合計6個の玉があり、ひとつの箱にひとつずつ玉を入れるとする。ただし、隣り合う\\
番号の箱には異なる色の玉が入るようにする。このような入れ方は全部で何通りある\\
かを求めよ。
\end{eqnarray}
2021早稲田大学教育学部過去問
【理数個別の過去問解説】2007年度京都大学 数学 理系第1問(2)解説
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
得点1,2,...,nが等しい確率で得られるゲームを独立に3回繰り返す。
このとき、 2回目の得点が1回目の得点以上であり、さらに3回目の特典が2回目の得点以上となる確率を求めよう。
この動画を見る
得点1,2,...,nが等しい確率で得られるゲームを独立に3回繰り返す。
このとき、 2回目の得点が1回目の得点以上であり、さらに3回目の特典が2回目の得点以上となる確率を求めよう。
解き方無限大 高校入試 図形 円
【数A】確率:確率の最大
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
さいころを1000回投げるとき、1の目がちょうどk回出る確率を$P_k$とする。
$P_k$が最大となるkを求めよ。
この動画を見る
さいころを1000回投げるとき、1の目がちょうどk回出る確率を$P_k$とする。
$P_k$が最大となるkを求めよ。
【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(4)解説
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(4)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B={}_a\mathrm{C}_b$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る
東京大学 2021年理科・文科第4問(4)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B={}_a\mathrm{C}_b$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
高校受験 図形問題
良問!ガウス記号の方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{x}{x+4}=\dfrac{5[x]-7}{7[x]-5}$
この動画を見る
これを解け.
$\dfrac{x}{x+4}=\dfrac{5[x]-7}{7[x]-5}$