数A
関数と図形 東工大附属(改) B
単元:
#数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
面積6等分
Cの座標は?
*図は動画内参照
2021東京工業大学附属科学技術高等学校
この動画を見る
面積6等分
Cの座標は?
*図は動画内参照
2021東京工業大学附属科学技術高等学校
計算不要 正三角形2こ 2021かえつ有明 C
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABC、△ADEは正三角形
DF:FE=?
*図は動画内参照
2021かえつ有明高等学校
この動画を見る
△ABC、△ADEは正三角形
DF:FE=?
*図は動画内参照
2021かえつ有明高等学校
2021灘高 不思議な誘導付き整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ab^2+(3a+4)b+2a+6=0・・・①$を満たす.
(1)$P=2ab+3a+4$とする.$P^2$を$a$のみを用いて表せ.
(2)①を満たす整数$a,b$を求めよ.$a \neq 0,b \neq 0$
2021灘高過去問
この動画を見る
$ab^2+(3a+4)b+2a+6=0・・・①$を満たす.
(1)$P=2ab+3a+4$とする.$P^2$を$a$のみを用いて表せ.
(2)①を満たす整数$a,b$を求めよ.$a \neq 0,b \neq 0$
2021灘高過去問
2021神奈川県 解き方2通り! 正三角形2つ B
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABCと△DEFは正三角形
△ABCと△DEFの面積比=12:7
AD=?(AD<DB))
*図は動画内参照
2021神奈川県
この動画を見る
△ABCと△DEFは正三角形
△ABCと△DEFの面積比=12:7
AD=?(AD<DB))
*図は動画内参照
2021神奈川県
2021 神奈川県 円周角 A
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\angle AFD=?$
*図は動画内参照
2021神奈川県
この動画を見る
$\angle AFD=?$
*図は動画内参照
2021神奈川県
こういう問題が好き 城北 円周角 B
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{AB} : \stackrel{\huge\frown}{CD} =?$
*図は動画内参照
2021城北高等学校
この動画を見る
$\stackrel{\huge\frown}{AB} : \stackrel{\huge\frown}{CD} =?$
*図は動画内参照
2021城北高等学校
2021 筑波大学附属駒場 15°75°90°の直角三角形の面積
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABC=?
*図は動画内参照
2021筑波大学附属駒場高等学校
この動画を見る
△ABC=?
*図は動画内参照
2021筑波大学附属駒場高等学校
2021上智大 2つの解法 指数連立方程式
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
4^x+9^y=5 \\
2^x・3^y=S
\end{array}
\right.
\end{eqnarray}$
連立方程式が実数解2組もつための$S$の必要十分条件を求めよ.
2021上智大過去問
真面目な方程式 解は2つ
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$x^x=\left(\dfrac{4}{9}\right)^{\frac{4}{9}}$
この動画を見る
これを解け.
$x^x=\left(\dfrac{4}{9}\right)^{\frac{4}{9}}$
出てきた答えについて考える 錦城 A
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照
2021錦城高等学校
この動画を見る
斜線部の面積=?
*図は動画内参照
2021錦城高等学校
慶應女子2021 関数 B
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
△ABCの内接円の半径r=?
*図は動画内参照
2021慶應義塾女子高等学校
この動画を見る
△ABCの内接円の半径r=?
*図は動画内参照
2021慶應義塾女子高等学校
ガウス記号 B 2021 明治学院【改】
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
実数aに対してaを超えない最大の整数を[a]で表す。
[$\sqrt n$]=2となる整数nはいくつ?
2021明治学院高等学校
この動画を見る
実数aに対してaを超えない最大の整数を[a]で表す。
[$\sqrt n$]=2となる整数nはいくつ?
2021明治学院高等学校
【高校数学】合同式の問題はこうやって解け!【受験】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$n$を$5$で割った余りが$4$のとき、$n^3-4n^2-4n-1$を$5$で割った余りを求めよ
この動画を見る
$n$を$5$で割った余りが$4$のとき、$n^3-4n^2-4n-1$を$5$で割った余りを求めよ
教え子に授業させてみた
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$2a^2+(8-b)a-4b=2021$
正の整数a,bの組(a,b)をすべて求めよ。
この動画を見る
$2a^2+(8-b)a-4b=2021$
正の整数a,bの組(a,b)をすべて求めよ。
2021順天堂(医)正五角形・簡単作図法も
単元:
#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
1辺の長さが1の正五角形の
①外接円の面積を求めよ.
②正五角形の面積を求めよ.
2021順天堂(医)
この動画を見る
1辺の長さが1の正五角形の
①外接円の面積を求めよ.
②正五角形の面積を求めよ.
2021順天堂(医)
正方形と円 2021 愛知高校
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
斜線部の面積=x
正方形の面積をxで表せ。
*図は動画内参照
2021愛知高等学校
この動画を見る
斜線部の面積=x
正方形の面積をxで表せ。
*図は動画内参照
2021愛知高等学校
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第4問〜整数の性質
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第4問}$
正の整数$m$に対して
$a^2+b^2+c^2+d^2=m, a \geqq b \geqq c \geqq d \geqq 0$ $\cdots$①
を満たす整数$a,b,c,d$の組がいくつあるかを考える。
(1)$m=14$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$
は
$(\boxed{\ \ ア\ \ }, \boxed{\ \ イ\ \ }, \boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ })$
のただ一つである。
また、$m=28$のとき、①を満たす整数$a,b,c,d$の組の個数は
$\boxed{\ \ オ\ \ }$個である。
(2)$a$が奇数のとき、整数$n$を用いて$a=2n+1$と表すことができる。
このとき、$n(n+1)$は偶数であるから、次の条件が全ての奇数$a$で成り立つ
ような正の整数$h$のうち、最大のものは$h=\boxed{\ \ カ\ \ }$である。
条件:$a^2-1$は$h$の倍数である。
よって、$a$が奇数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは$1$である。
また、$a$が偶数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは、$0$または$4$の
いずれかである。
(3)(2)により、$a^2+b^2+c^2+d^2$が$\boxed{\ \ カ\ \ }$の倍数ならば、整数$a,b,c,d$
のうち、偶数であるものの個数は$\boxed{\ \ キ\ \ }$個である。
(4)(3)を用いることにより、$m$が$\boxed{\ \ カ\ \ }$の倍数であるとき、①を満たす整数
$a,b,c,d$が求めやすくなる。
例えば、$m=224$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$は
$(\boxed{\ \ クケ\ \ }, \boxed{\ \ コ\ \ }, \boxed{\ \ サ\ \ }, \boxed{\ \ シ\ \ })$
のただ1つであることが分かる。
(5)7の倍数で896の約数である正の整数$m$のうち、①を満たす整数$a,b,c,d$
の組の個数が$\boxed{\ \ オ\ \ }$個であるものの個数は$\boxed{\ \ ス\ \ }$個であり、
そのうち最大のものは$m=\boxed{\ \ セソタ\ \ }$である。
2021共通テスト過去問
この動画を見る
${\large第4問}$
正の整数$m$に対して
$a^2+b^2+c^2+d^2=m, a \geqq b \geqq c \geqq d \geqq 0$ $\cdots$①
を満たす整数$a,b,c,d$の組がいくつあるかを考える。
(1)$m=14$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$
は
$(\boxed{\ \ ア\ \ }, \boxed{\ \ イ\ \ }, \boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ })$
のただ一つである。
また、$m=28$のとき、①を満たす整数$a,b,c,d$の組の個数は
$\boxed{\ \ オ\ \ }$個である。
(2)$a$が奇数のとき、整数$n$を用いて$a=2n+1$と表すことができる。
このとき、$n(n+1)$は偶数であるから、次の条件が全ての奇数$a$で成り立つ
ような正の整数$h$のうち、最大のものは$h=\boxed{\ \ カ\ \ }$である。
条件:$a^2-1$は$h$の倍数である。
よって、$a$が奇数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは$1$である。
また、$a$が偶数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは、$0$または$4$の
いずれかである。
(3)(2)により、$a^2+b^2+c^2+d^2$が$\boxed{\ \ カ\ \ }$の倍数ならば、整数$a,b,c,d$
のうち、偶数であるものの個数は$\boxed{\ \ キ\ \ }$個である。
(4)(3)を用いることにより、$m$が$\boxed{\ \ カ\ \ }$の倍数であるとき、①を満たす整数
$a,b,c,d$が求めやすくなる。
例えば、$m=224$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$は
$(\boxed{\ \ クケ\ \ }, \boxed{\ \ コ\ \ }, \boxed{\ \ サ\ \ }, \boxed{\ \ シ\ \ })$
のただ1つであることが分かる。
(5)7の倍数で896の約数である正の整数$m$のうち、①を満たす整数$a,b,c,d$
の組の個数が$\boxed{\ \ オ\ \ }$個であるものの個数は$\boxed{\ \ ス\ \ }$個であり、
そのうち最大のものは$m=\boxed{\ \ セソタ\ \ }$である。
2021共通テスト過去問
2021福岡大(医)指数連立方程式 基本
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x\neq 1,y\neq 1,$であり$,\gt 0,y\gt 0$である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}-x^{90}
\end{array}
\right.
\end{eqnarray}$
2021福岡大(医)
この動画を見る
$x\neq 1,y\neq 1,$であり$,\gt 0,y\gt 0$である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}-x^{90}
\end{array}
\right.
\end{eqnarray}$
2021福岡大(医)
【高校数学】整数の割り算~商と余りについての理解~ 5-5【数学A】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,bは整数とする。aを5で割ると2余り、bを5で割ると4余る。
このとき、次の数を5で割ったときの余りを求めよ。
(1) a+b
(2) a-b
(3) ab
この動画を見る
a,bは整数とする。aを5で割ると2余り、bを5で割ると4余る。
このとき、次の数を5で割ったときの余りを求めよ。
(1) a+b
(2) a-b
(3) ab
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第3問〜確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第3問}$
二つの袋$A,B$と一つの箱がある。$A$の袋には赤球2個と白球1個が入っており、
$B$の袋には赤球3個と白球1個が入っている。また、箱には何も入っていない。
(1)$A,B$の袋から球をそれぞれ1個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の2個の球のうち少なくとも1個が赤球である確率は$\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
$(\textrm{ii})$箱の中をよくかき混ぜてから球を1個取り出すとき、取り出した球が赤球
である確率は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、取り出した球が赤球であったときに、
それが$B$の袋に入っていたものである条件付き確率は$\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コサ\ \ }}$である。
(2)$A,B$の袋から球をそれぞれ2個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の4個の球のうち、ちょうど2個が赤球である確率は$\displaystyle \frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$である。
また、箱の中の4個の球のうち、ちょうど3個が赤球である確率は$\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。
$(\textrm{ii})$箱の中をよくかき混ぜてから球を2個同時に取り出すとき、どちらの球も
赤球である確率は$\displaystyle \frac{\boxed{\ \ タチ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。また、取り出した2個の球がどちらも
赤球であったときに、それらのうちの1個のみがBの袋に入っていたものである
条件付き確率は$\displaystyle \frac{\boxed{\ \ トナ\ \ }}{\boxed{\ \ ニヌ\ \ }}$である。
この動画を見る
${\large第3問}$
二つの袋$A,B$と一つの箱がある。$A$の袋には赤球2個と白球1個が入っており、
$B$の袋には赤球3個と白球1個が入っている。また、箱には何も入っていない。
(1)$A,B$の袋から球をそれぞれ1個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の2個の球のうち少なくとも1個が赤球である確率は$\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$である。
$(\textrm{ii})$箱の中をよくかき混ぜてから球を1個取り出すとき、取り出した球が赤球
である確率は$\displaystyle \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}$であり、取り出した球が赤球であったときに、
それが$B$の袋に入っていたものである条件付き確率は$\displaystyle \frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コサ\ \ }}$である。
(2)$A,B$の袋から球をそれぞれ2個ずつ同時に取り出し、球の色を調べずに箱に入れる。
$(\textrm{i})$箱の中の4個の球のうち、ちょうど2個が赤球である確率は$\displaystyle \frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$である。
また、箱の中の4個の球のうち、ちょうど3個が赤球である確率は$\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。
$(\textrm{ii})$箱の中をよくかき混ぜてから球を2個同時に取り出すとき、どちらの球も
赤球である確率は$\displaystyle \frac{\boxed{\ \ タチ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。また、取り出した2個の球がどちらも
赤球であったときに、それらのうちの1個のみがBの袋に入っていたものである
条件付き確率は$\displaystyle \frac{\boxed{\ \ トナ\ \ }}{\boxed{\ \ ニヌ\ \ }}$である。
【合同式】整数問題がみるみる解けるようになる最強の武器を授けましょう。【数学】
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$17^{100}$を$6$で割ったあまりを求めよ
この動画を見る
$17^{100}$を$6$で割ったあまりを求めよ
円錐と内接球3つ D 立教新座(改)2021
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
球Pと球Qは半径が等しい
球Pと球Rは半径が異なる
(1)球Pの半径は?
(2)球Rの半径は?
*図は動画内参照
2021立教新座高等学校(改)
この動画を見る
球Pと球Qは半径が等しい
球Pと球Rは半径が異なる
(1)球Pの半径は?
(2)球Rの半径は?
*図は動画内参照
2021立教新座高等学校(改)
2021 智弁和歌山 B
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BCはABの何倍?
*図は動画内参照
2021智辯学園和歌山高等学校
この動画を見る
BCはABの何倍?
*図は動画内参照
2021智辯学園和歌山高等学校
円錐に内接する立方体 智弁和歌山(改) B
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#立体図形#立体図形その他#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円錐の底面の半径は?
*図は動画内参照
2021智辯学園和歌山高等学校(改)
この動画を見る
円錐の底面の半径は?
*図は動画内参照
2021智辯学園和歌山高等学校(改)
2021関西医科大 絶対値記号・整数問題
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
この動画を見る
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
難易度MAX 2021ラ・サール最後の問題 D
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径1の2つの円が重ならないように正方形内を動く。
円の中心P,Qが存在しうる範囲の面積を求めよ。
*図は動画内参照
2021ラ・サール高等学校
この動画を見る
半径1の2つの円が重ならないように正方形内を動く。
円の中心P,Qが存在しうる範囲の面積を求めよ。
*図は動画内参照
2021ラ・サール高等学校
直角三角形の中の正方形 A 解き方2通り 岡山白陵
単元:
#数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正方形の1辺の長さは?
*図は動画内参照
岡山白陵高等学校
この動画を見る
正方形の1辺の長さは?
*図は動画内参照
岡山白陵高等学校
【簡単すぎ】4分で不定方程式が得意になります。
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
3rd School
問題文全文(内容文):
$ax+by=d$を満たす整数$x,y$をすべて求めよ
$(a,b,d$は整数$)$
この動画を見る
$ax+by=d$を満たす整数$x,y$をすべて求めよ
$(a,b,d$は整数$)$
気がつけば爽快!! B
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BD:DC=?
*図は動画内参照
2021西大和学園高等学校
この動画を見る
BD:DC=?
*図は動画内参照
2021西大和学園高等学校
割ると余りと商が等しい 2021西大和学園B
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?
2021西大和学園高等学校
この動画を見る
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?
2021西大和学園高等学校