複素数と方程式

17神奈川県教員採用試験(数学:8番 積分【面積の最小値】)

単元:
#数Ⅱ#2次関数#複素数と方程式#2次関数とグラフ#微分法と積分法#解と判別式・解と係数の関係#面積、体積#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
8⃣$y=x^2$と(-1,3)を通る直線lで囲まれた面積Sの最小値を求めよ。
この動画を見る
8⃣$y=x^2$と(-1,3)を通る直線lで囲まれた面積Sの最小値を求めよ。
14奈良県教員採用試験(数学:高1-8番 複素数)

単元:
#数Ⅰ#数Ⅱ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣-(8)
$x^3-1=0$の虚数解の1つをω
$ω^{10}+ω^{20}$
この動画を見る
1⃣-(8)
$x^3-1=0$の虚数解の1つをω
$ω^{10}+ω^{20}$
ガウス記号の入った3次方程式

熊本大 三次方程式の解の配置

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3-px^2+(p^2-2p)x+q=0$が負の解を1つと異なる正の解2つもつような整数$p,q$を求めよ.
2018熊本大過去問
この動画を見る
$x^3-px^2+(p^2-2p)x+q=0$が負の解を1つと異なる正の解2つもつような整数$p,q$を求めよ.
2018熊本大過去問
室蘭工業大2020複素数の方程式

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$z^2=2+\sqrt5 i$を解け.
②①の2つの解を$\alpha,\beta$とする.
複素平面上の$\alpha,\beta$を$A,B$とし$\triangle ABC$が正三角形になる点$C$の値
$\delta$を求めよ.
2020室蘭工業大過去問
この動画を見る
①$z^2=2+\sqrt5 i$を解け.
②①の2つの解を$\alpha,\beta$とする.
複素平面上の$\alpha,\beta$を$A,B$とし$\triangle ABC$が正三角形になる点$C$の値
$\delta$を求めよ.
2020室蘭工業大過去問
山梨大2020 複素数

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\dfrac{(\sqrt3+i)^n(\sqrt3+3i)}{-1+i}$は実数出ないことを示せ.
2020山梨大過去問
この動画を見る
$\dfrac{(\sqrt3+i)^n(\sqrt3+3i)}{-1+i}$は実数出ないことを示せ.
2020山梨大過去問
19神奈川県教員採用試験(数学:6番 剰余の定理)

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
6⃣
P(x)をx+1,$(x-1)^2$で割った余りは、-3,-3x+6
P(x)を$(x+1)(x-1)^2$で割った余りを求めよ。
この動画を見る
6⃣
P(x)をx+1,$(x-1)^2$で割った余りは、-3,-3x+6
P(x)を$(x+1)(x-1)^2$で割った余りを求めよ。
14兵庫県教員採用試験(数学:1-5番 解と係数の関係)

単元:
#数Ⅰ#数Ⅱ#複素数と方程式#図形と計量#三角比(三角比・拡張・相互関係・単位円)#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(5)
$8x^2+kx-3=0,x=sinθ,cosθ$のときkの値を求めよ。
この動画を見る
1⃣-(5)
$8x^2+kx-3=0,x=sinθ,cosθ$のときkの値を求めよ。
16東京都教員採用試験(数学:1-5番 行列)

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(5)
$\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a^3 & 2a \\
1-a & 1
\end{array}
\right)
\end{eqnarray}
, \quad a \in \mathbb{ R }$
$A^{-1}$が存在しないとき、aの値を求めよ。
この動画を見る
1⃣-(5)
$\begin{eqnarray}
A = \left(
\begin{array}{cccc}
a^3 & 2a \\
1-a & 1
\end{array}
\right)
\end{eqnarray}
, \quad a \in \mathbb{ R }$
$A^{-1}$が存在しないとき、aの値を求めよ。
17兵庫県教員採用試験(数学:1-3番 剰余の定理)

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
1⃣-(3)
$x^{2017}$を$x^2-1$で割った余り
この動画を見る
1⃣-(3)
$x^{2017}$を$x^2-1$で割った余り
慶應(医)三次方程式の解とΣ

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$8x^3-6x+1=0$の3つの解を$\alpha,\beta,\delta$とする.これを解け.
$\displaystyle \sum_{n=0}^{\infty}(\alpha^n+\beta^n+\delta^n)$
1993慶應(医)
この動画を見る
$8x^3-6x+1=0$の3つの解を$\alpha,\beta,\delta$とする.これを解け.
$\displaystyle \sum_{n=0}^{\infty}(\alpha^n+\beta^n+\delta^n)$
1993慶應(医)
産業医大 3次方程式と2次方程式の共通解

単元:
#数Ⅰ#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.
1996産業医大過去問
この動画を見る
$P$は素数であり,$q$は整数である.
$x^3-2x^2+x-p=0$,$x^2-x+q=0$が1つの共通解をもつ,$p,q$を求めよ.
1996産業医大過去問
高次方程式の有理数解

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
この動画を見る
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
N進法の3次方程式

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法か?
$x^3-12x^2+59x-93=0$が3つの整数解をもち,それらが等差数列となっている.
この動画を見る
何進法か?
$x^3-12x^2+59x-93=0$が3つの整数解をもち,それらが等差数列となっている.
18東京都教員採用試験(数学:解と係数の関係)

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
1⃣-(1)
$x^3+x^2+2x-3=0$の解をα、β、γとする。
(1)$α^2+β^2+γ^2$
(2)$α^3+β^3+γ^3$
この動画を見る
1⃣-(1)
$x^3+x^2+2x-3=0$の解をα、β、γとする。
(1)$α^2+β^2+γ^2$
(2)$α^3+β^3+γ^3$
日本医科大学 三次方程式の解が等比数列

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
この動画を見る
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
6次方程式の6つの解

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
複数の解法でこれを解け.
$z^6+1=0$
この動画を見る
複数の解法でこれを解け.
$z^6+1=0$
20年5月数学検定準1級1次試験(複素数)

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
【数Ⅱ】複素数と方程式:3次方程式が異なる3つの解を持つ条件:方程式x³+(a-1)x-a=0が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
この動画を見る
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
【数Ⅱ】複素数と方程式:3次方程式が2重解を持つ条件:x³+6x²+ax+b=0が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材:
#ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x^3+6x^2+ax+b=0$が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
この動画を見る
$x^3+6x^2+ax+b=0$が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
複素数の5次方程式

単元:
#数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.($\sin,\cos$は使わない)
$x^5=i$
この動画を見る
これを解け.($\sin,\cos$は使わない)
$x^5=i$
複素数 慈恵医大

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.
(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.
2004慈恵医大過去問
この動画を見る
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.
(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.
2004慈恵医大過去問
複素数 福井大

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha^3=-4+\sqrt{11}i$,$c=\alpha+\overline{\alpha}$である.
(1)$\vert \alpha \vert$の値を求めよ.
(2)$c^3-9c$の値を求めよ.
(3)$c$の値を求めよ.
1999福井大過去問
この動画を見る
$\alpha^3=-4+\sqrt{11}i$,$c=\alpha+\overline{\alpha}$である.
(1)$\vert \alpha \vert$の値を求めよ.
(2)$c^3-9c$の値を求めよ.
(3)$c$の値を求めよ.
1999福井大過去問
複素数 日本大

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$,$\displaystyle \sum_{n=1}^{23}z^n$
2000日大過去問
この動画を見る
これを解け.
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$,$\displaystyle \sum_{n=1}^{23}z^n$
2000日大過去問
複素数 広島大

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.
1966広島大過去問
この動画を見る
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.
1966広島大過去問
n乗根の方程式

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.$x,y$は実数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=10 \\
\sqrt[3]{x}+\sqrt[3]{y}=\dfrac{5}{2}\sqrt[6]{xy}
\end{array}
\right.
\end{eqnarray}$
この動画を見る
これを解け.$x,y$は実数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=10 \\
\sqrt[3]{x}+\sqrt[3]{y}=\dfrac{5}{2}\sqrt[6]{xy}
\end{array}
\right.
\end{eqnarray}$
三次方程式の実数解 埼玉大

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$12x^3-21x^2+2x+4=0$
(1)正の実数を2つ,負の実数解を1つもつことを示せ.
(2)正の実数解を$\alpha,\beta(\alpha \lt \beta)$とするとき,$\vert \alpha-1 \vert,\vert \beta-1 \vert $の大小比較せよ.
1982埼玉大過去問
この動画を見る
$12x^3-21x^2+2x+4=0$
(1)正の実数を2つ,負の実数解を1つもつことを示せ.
(2)正の実数解を$\alpha,\beta(\alpha \lt \beta)$とするとき,$\vert \alpha-1 \vert,\vert \beta-1 \vert $の大小比較せよ.
1982埼玉大過去問
式の値

単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
この動画を見る
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
複素数の3次方程式

複素数の計算 群馬大

単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ
(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.
群馬大過去問
この動画を見る
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ
(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.
群馬大過去問