対数関数
【高校数学】対数③~底の変換と使い方~【数学Ⅱ】
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) log₈16を簡単にせよ
(2) log₃4×log₄9を計算せよ
(3) loga b×logb c×logc a=1を証明せよ
この動画を見る
(1) log₈16を簡単にせよ
(2) log₃4×log₄9を計算せよ
(3) loga b×logb c×logc a=1を証明せよ
【高校数学】対数②~対数の性質のイメージと証明,ときどき例題~【数学Ⅱ】
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の値を求めよ。
(1) log₁₀2+log₁₀5
(2) 4log₂$\sqrt{ 2 }$+$\displaystyle \frac{1}{2}$log₂3-log₂$\frac{ \sqrt{3} }{ 2 }$
この動画を見る
次の値を求めよ。
(1) log₁₀2+log₁₀5
(2) 4log₂$\sqrt{ 2 }$+$\displaystyle \frac{1}{2}$log₂3-log₂$\frac{ \sqrt{3} }{ 2 }$
【高校数学】対数①~logとは?対数の基礎~【数学Ⅱ】
単元:
#数Ⅱ#指数関数と対数関数#対数関数
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
a^p=$M \Leftrightarrow p$=logaM
a:底 M:真数 p:指数 a>0,a≠1,M>0(真数条件)
【以下の問題に答えよ (動画内の問題】
(1)8$\displaystyle \frac{1}{3}$=2をp=logaMの形にせよ。
(2)log₁₀$\displaystyle \frac{1}{100000}$=-5をa^p=Mの形にせよ。
(3)log₅125を求めよ。
この動画を見る
a^p=$M \Leftrightarrow p$=logaM
a:底 M:真数 p:指数 a>0,a≠1,M>0(真数条件)
【以下の問題に答えよ (動画内の問題】
(1)8$\displaystyle \frac{1}{3}$=2をp=logaMの形にせよ。
(2)log₁₀$\displaystyle \frac{1}{100000}$=-5をa^p=Mの形にせよ。
(3)log₅125を求めよ。
東大 不等式 たくみさん4度目の登場 Mathematics Japanese university entrance exam Tokyo University
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
'09東京大学過去問題
実数$x,-1<x<1,x \neq 0$
(1)示せ
$(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}} $
(2)示せ
$0.9999^{101} < 0.99 < 0.9999^{100} $
この動画を見る
'09東京大学過去問題
実数$x,-1<x<1,x \neq 0$
(1)示せ
$(1-x)^{1-\frac{1}{x}} < (1+x)^{\frac{1}{x}} $
(2)示せ
$0.9999^{101} < 0.99 < 0.9999^{100} $
自然対数の底e ネイピア数を東大留年美女&早稲田中退の社会不適合文系コンビが真面目に語る。もっちゃんと数学の第1回
山形(医他)4次関数と接線 積分 高校数学 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
'89山形大学過去問題
$f(x)=x^4-6a^2x^2+5a^4$ (a>0)
(a,0)における接線l。
f(x)とlとで囲まれる面積
この動画を見る
'89山形大学過去問題
$f(x)=x^4-6a^2x^2+5a^4$ (a>0)
(a,0)における接線l。
f(x)とlとで囲まれる面積
名古屋市立(医) 対数方程式 実数解 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
この動画を見る
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。
横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。
横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
三重大学 対数方程式 整数解の個数 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
この動画を見る
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions
単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
①
(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3 PとP+2がともに素数のときP+1は6の倍数であることを示せ。
②
不等式$log_2(x-1) \leqq log_4(2x-1)$
この動画を見る
広島大学過去問題
①
(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3 PとP+2がともに素数のときP+1は6の倍数であることを示せ。
②
不等式$log_2(x-1) \leqq log_4(2x-1)$
東北大 対数方程式 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
この動画を見る
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
東北大 常用対数 桁数と最高位の数字 高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
この動画を見る
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$