指数関数と対数関数
指数関数と対数関数
高知大 筑波大 指数方程式 漸化式 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#筑波大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け
筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
この動画を見る
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け
筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
筑波大 横国大 4次方程式 対数連立方程式 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#筑波大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。
横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
この動画を見る
筑波大学過去問題
$f(x)=x^4+2x^2-4x+8$
(1)$(x^2+t)^2-f(x)=(px+q)^2$が恒等式になるような整数t,p,qの値を1組求めよ。
(2)$f(x)=0$のすべての解を求めよ。
横浜国立大学過去問題
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
log_{2x}y+log_x2y=1 \\
log_2xy=1
\end{array}
\right.
\end{eqnarray}$
三重大学 対数方程式 整数解の個数 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
この動画を見る
三重大学過去問題
$α>0$
$f(x)=log_3(-\frac{1}{2}x^2+\frac{1}{2}αx+9)$
f(x)が整数となるxが$0 \leqq x \leqq α$の範囲でちょうど6個あるようなαの範囲
広島大 素数・対数不等式 高校数学 Japanese university entrance exam questions

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
①
(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3 PとP+2がともに素数のときP+1は6の倍数であることを示せ。
②
不等式$log_2(x-1) \leqq log_4(2x-1)$
この動画を見る
広島大学過去問題
①
(1)P自然数
$P^3+(P+1)^3+(P+2)^3$は9の倍数であることを示せ。
(2)P>3 PとP+2がともに素数のときP+1は6の倍数であることを示せ。
②
不等式$log_2(x-1) \leqq log_4(2x-1)$
東北大 対数方程式 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
この動画を見る
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
「息抜き」整数問題

単元:
#数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$3^a+3^b=n^2$を満たす自然数(a,b,n)は無限にあることを示せ。
$5^a+5^b=n^2$を満たす(a,b,n)はないことを示せ。
a,b,n自然数
この動画を見る
$3^a+3^b=n^2$を満たす自然数(a,b,n)は無限にあることを示せ。
$5^a+5^b=n^2$を満たす(a,b,n)はないことを示せ。
a,b,n自然数
近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。
早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。
早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
東北大 常用対数 桁数と最高位の数字 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
この動画を見る
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
e^πとπ^e どっちがでかい?

単元:
#数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$e^π$と$π^e$どっちがでかい?
この動画を見る
$e^π$と$π^e$どっちがでかい?
千葉大学 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
この動画を見る
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
【高校数学】数Ⅲ-102 指数関数の導関数②

単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=e^x \log x$
②$y=\dfrac{e^x}{e^x+e^{-x}}$
③$y=e^x \cos x$
④$y=x^{\sin x} (x \gt 0)$
この動画を見る
次の関数を微分せよ。
①$y=e^x \log x$
②$y=\dfrac{e^x}{e^x+e^{-x}}$
③$y=e^x \cos x$
④$y=x^{\sin x} (x \gt 0)$
【高校数学】数Ⅲ-101 指数関数の導関数①

単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(e^x)'=①\quad,(a^x)'=②\quad (a \gt 0)$
次の関数を微分せよ。
③$y=5^x$
④$y=3^{-x}$
⑤$y=e^{-2x}$
⑥$y=e^{\sqrt x}$
⑦$y=x・3^x$
⑧$y=x^2 e^x$
この動画を見る
$(e^x)'=①\quad,(a^x)'=②\quad (a \gt 0)$
次の関数を微分せよ。
③$y=5^x$
④$y=3^{-x}$
⑤$y=e^{-2x}$
⑥$y=e^{\sqrt x}$
⑦$y=x・3^x$
⑧$y=x^2 e^x$
【高校数学】数Ⅲ-99 対数関数の導関数②

単元:
#数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=(\log x)^2$
②$y=\dfrac{\log x}{x}$
③$y=\log(x+\sqrt{x^2+3})$
④$y=\log \dfrac{1+\sin x}{1- \sin x}$
この動画を見る
次の関数を微分せよ。
①$y=(\log x)^2$
②$y=\dfrac{\log x}{x}$
③$y=\log(x+\sqrt{x^2+3})$
④$y=\log \dfrac{1+\sin x}{1- \sin x}$
【高校数学】数Ⅲ-98 対数関数の導関数①

単元:
#数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$
次の関数を微分せよ。
⑤$y=\log 6x$
⑥$y=\log(3x^2+1)$
⑦$y=x\log 2x$
⑧$y=\log_{10} (1-2x)$
⑨$y=\log \vert x^2-1 \vert$
⑩$y=\log_3 \vert x+5 \vert$
この動画を見る
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$
次の関数を微分せよ。
⑤$y=\log 6x$
⑥$y=\log(3x^2+1)$
⑦$y=x\log 2x$
⑧$y=\log_{10} (1-2x)$
⑨$y=\log \vert x^2-1 \vert$
⑩$y=\log_3 \vert x+5 \vert$
弘前大(医) 整数問題証明 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013弘前大学過去問題
$5^{2n-1}+7^{2n-1}+23^{2n-1}$が35で割り切れることを証明せよ.
この動画を見る
2013弘前大学過去問題
$5^{2n-1}+7^{2n-1}+23^{2n-1}$が35で割り切れることを証明せよ.
大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

単元:
#数Ⅱ#図形と方程式#指数関数と対数関数#微分法と積分法#軌跡と領域#指数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
この動画を見る
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
【高校数学】数Ⅲ-81 関数の極限⑥(対数関数)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}\log_3 x$
②$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}} x$
③$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}}x$
④$\displaystyle \lim_{x\to \infty}\log_2 \dfrac{1}{2}$
⑤$\displaystyle \lim_{x\to \infty}\{\log_3 (x^2+1)-2\log_3 x\}$
この動画を見る
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}\log_3 x$
②$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}} x$
③$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}}x$
④$\displaystyle \lim_{x\to \infty}\log_2 \dfrac{1}{2}$
⑤$\displaystyle \lim_{x\to \infty}\{\log_3 (x^2+1)-2\log_3 x\}$
指数法則 0乗はなぜ1か

中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体

単元:
#数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
【高校数学】 数Ⅱ-143 常用対数③

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$1.2^{n} \lt 100$を満たす最大の整数nを求めよう。
②$3000 \lt (\displaystyle \frac{5}{4})^{n} \lt 6000$を満たす整数nをすべて求めよう。
この動画を見る
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$1.2^{n} \lt 100$を満たす最大の整数nを求めよう。
②$3000 \lt (\displaystyle \frac{5}{4})^{n} \lt 6000$を満たす整数nをすべて求めよう。
【高校数学】 数Ⅱ-142 常用対数②

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$2^{50}$は何桁の整数か求めよう。
②$(\displaystyle \frac{1}{3})^{30}$を小数で表したとき、小数第何位に初めて0でない数字が現れるか求めよう。
この動画を見る
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$2^{50}$は何桁の整数か求めよう。
②$(\displaystyle \frac{1}{3})^{30}$を小数で表したとき、小数第何位に初めて0でない数字が現れるか求めよう。
【高校数学】 数Ⅱ-141 常用対数①

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①____を底とする対数を常用対数という。
$1 \leqq a \lt 10,x=a \times 10^{π}$であるとき$\log_{10} x=\log_{10} a+n$となる。
◎$\log_{10}2=0.03010,\log_{10}3=0.4771$とする。次の値を小数第4位までもとめよう。
②$\log_{10}200$
③$\log_{10}15$
④$\log_{10}0.6$
⑤$\log_49$
この動画を見る
①____を底とする対数を常用対数という。
$1 \leqq a \lt 10,x=a \times 10^{π}$であるとき$\log_{10} x=\log_{10} a+n$となる。
◎$\log_{10}2=0.03010,\log_{10}3=0.4771$とする。次の値を小数第4位までもとめよう。
②$\log_{10}200$
③$\log_{10}15$
④$\log_{10}0.6$
⑤$\log_49$
【高校数学】 数Ⅱ-140 指数関数・対数関数の最大値・最小値②

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①関数$y=4^{x}-2^{x+1}+1$の最小値を求めよう。
②$1 \leqq x \leqq 27$において、関数$y=(\log_3x)^2-\log_3x^4-3$の最大値と最小値を求めよう。
この動画を見る
①関数$y=4^{x}-2^{x+1}+1$の最小値を求めよう。
②$1 \leqq x \leqq 27$において、関数$y=(\log_3x)^2-\log_3x^4-3$の最大値と最小値を求めよう。
【高校数学】 数Ⅱ-139 指数関数・対数関数の最大値・最小値①

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①関数$y=2^{2x}-4・2^{x}+1$の最小値を求めよう。
②関数$y=\log_3(2x-x^2)$の最大値を求めよう。
この動画を見る
①関数$y=2^{2x}-4・2^{x}+1$の最小値を求めよう。
②関数$y=\log_3(2x-x^2)$の最大値を求めよう。
【高校数学】 数Ⅱ-138 対数関数④・不等式編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。
①$\log_3 x \lt \displaystyle \frac{3}{2}$
②$\log_{\frac{1}{3}}x \geqq 2$
③$\log_3(x+2) \lt 2$
④$\log_2(x+1)+\log_2(x-2) \geqq 2$
⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
この動画を見る
◎次の不等式を解こう。
①$\log_3 x \lt \displaystyle \frac{3}{2}$
②$\log_{\frac{1}{3}}x \geqq 2$
③$\log_3(x+2) \lt 2$
④$\log_2(x+1)+\log_2(x-2) \geqq 2$
⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
【高校数学】 数Ⅱ-137 対数関数③・方程式編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。
①$\log_3 x=2$
②$\log_{\frac{1}{4}}x=-3$
③$\log_{16}(x-2)=0.5$
④$\log_2(x-1)+\log_2(x+5)=4$
⑤$\log_{\frac{1}{9}}(x+7)=\log_{\frac{1}{3}}(6x-3)+1$
この動画を見る
◎次の方程式を解こう。
①$\log_3 x=2$
②$\log_{\frac{1}{4}}x=-3$
③$\log_{16}(x-2)=0.5$
④$\log_2(x-1)+\log_2(x+5)=4$
⑤$\log_{\frac{1}{9}}(x+7)=\log_{\frac{1}{3}}(6x-3)+1$
【高校数学】 数Ⅱ-136 対数関数②・性質編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の数の大小を不等号を用いて表そう。
①$\log_32,\log_37,\log_34$
②$\log_{0.3}2,\log_{0.3}7,\log_{0.3}4$
③$\log_32,\log_96,\displaystyle \frac{1}{2}$
④$\log_{\frac{1}{2}}3,\log_{\frac{1}{4}}10,\log_{\frac{1}{8}}1$
この動画を見る
◎次の数の大小を不等号を用いて表そう。
①$\log_32,\log_37,\log_34$
②$\log_{0.3}2,\log_{0.3}7,\log_{0.3}4$
③$\log_32,\log_96,\displaystyle \frac{1}{2}$
④$\log_{\frac{1}{2}}3,\log_{\frac{1}{4}}10,\log_{\frac{1}{8}}1$
【高校数学】 数Ⅱ-135 対数関数①・グラフ編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、関数$y=\log_a x$を、$a$を①____とすると$x$の対数関数という。
ちなみに、$y=\log_a x$のグラフは、$y=a^x$のグラフと②____に関して対称。
◎次の関数のグラフを書こう。
③$y=\log_4 x$
④$y=\log_{\frac{1}{4}} x$
この動画を見る
$a \gt 0.a≠1$とするとき、関数$y=\log_a x$を、$a$を①____とすると$x$の対数関数という。
ちなみに、$y=\log_a x$のグラフは、$y=a^x$のグラフと②____に関して対称。
◎次の関数のグラフを書こう。
③$y=\log_4 x$
④$y=\log_{\frac{1}{4}} x$
