指数関数と対数関数
指数関数と対数関数
近畿(医)早稲田 三角関数・対数 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#微分法と積分法#微分とその応用#微分法#早稲田大学#近畿大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。
早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
この動画を見る
近畿大学過去問題
$sin^3θ+cos^3θ \quad (0 \leqq θ \leq 2\pi)$の最大値、最小値を求めよ。
早稲田大学過去問題
$\log_3x^2+log_9(x+3)^2+log_3\frac{1}{a}=0$が異なる4つの実数解をもつaの範囲
$x \neq 0 , -3 \quad a>0$
静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
東北大 常用対数 桁数と最高位の数字 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
この動画を見る
2006東北大学過去問題
$6^n$が39桁の自然数になるとき、自然数nを求めよ。
その場合のnに対する$6^n$の最高位の数字を求めよ。
$log_{10}2=0.3010$
$log_{10}3=0.4771$
e^πとπ^e どっちがでかい?

単元:
#数Ⅱ#指数関数と対数関数#微分法と積分法#指数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$e^π$と$π^e$どっちがでかい?
この動画を見る
$e^π$と$π^e$どっちがでかい?
千葉大学 整数問題 高校数学 Japanese university entrance exam questions

単元:
#数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
この動画を見る
2003千葉大学過去問題
x,y,z,nは自然数
$x^2=7^{2n}(y^2+10z^2)$が成り立っている
(1)平方数を3で割った余りは0か1を示せ
(2)yzは3の倍数であることを示せ。
(3)y,zが共に素数のときxをnを用いて表せ。
【高校数学】数Ⅲ-102 指数関数の導関数②

単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=e^x \log x$
②$y=\dfrac{e^x}{e^x+e^{-x}}$
③$y=e^x \cos x$
④$y=x^{\sin x} (x \gt 0)$
この動画を見る
次の関数を微分せよ。
①$y=e^x \log x$
②$y=\dfrac{e^x}{e^x+e^{-x}}$
③$y=e^x \cos x$
④$y=x^{\sin x} (x \gt 0)$
【高校数学】数Ⅲ-101 指数関数の導関数①

単元:
#数Ⅱ#指数関数と対数関数#指数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(e^x)'=①\quad,(a^x)'=②\quad (a \gt 0)$
次の関数を微分せよ。
③$y=5^x$
④$y=3^{-x}$
⑤$y=e^{-2x}$
⑥$y=e^{\sqrt x}$
⑦$y=x・3^x$
⑧$y=x^2 e^x$
この動画を見る
$(e^x)'=①\quad,(a^x)'=②\quad (a \gt 0)$
次の関数を微分せよ。
③$y=5^x$
④$y=3^{-x}$
⑤$y=e^{-2x}$
⑥$y=e^{\sqrt x}$
⑦$y=x・3^x$
⑧$y=x^2 e^x$
【高校数学】数Ⅲ-99 対数関数の導関数②

単元:
#数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。
①$y=(\log x)^2$
②$y=\dfrac{\log x}{x}$
③$y=\log(x+\sqrt{x^2+3})$
④$y=\log \dfrac{1+\sin x}{1- \sin x}$
この動画を見る
次の関数を微分せよ。
①$y=(\log x)^2$
②$y=\dfrac{\log x}{x}$
③$y=\log(x+\sqrt{x^2+3})$
④$y=\log \dfrac{1+\sin x}{1- \sin x}$
【高校数学】数Ⅲ-98 対数関数の導関数①

単元:
#数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$
次の関数を微分せよ。
⑤$y=\log 6x$
⑥$y=\log(3x^2+1)$
⑦$y=x\log 2x$
⑧$y=\log_{10} (1-2x)$
⑨$y=\log \vert x^2-1 \vert$
⑩$y=\log_3 \vert x+5 \vert$
この動画を見る
$(\log x)’=①,\quad (\log_a x)'=②,\quad (\log \vert x \vert)'=③,$
$(\log_a \vert x \vert)'=④$
次の関数を微分せよ。
⑤$y=\log 6x$
⑥$y=\log(3x^2+1)$
⑦$y=x\log 2x$
⑧$y=\log_{10} (1-2x)$
⑨$y=\log \vert x^2-1 \vert$
⑩$y=\log_3 \vert x+5 \vert$
弘前大(医) 整数問題証明 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013弘前大学過去問題
$5^{2n-1}+7^{2n-1}+23^{2n-1}$が35で割り切れることを証明せよ.
この動画を見る
2013弘前大学過去問題
$5^{2n-1}+7^{2n-1}+23^{2n-1}$が35で割り切れることを証明せよ.
大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

単元:
#数Ⅱ#図形と方程式#指数関数と対数関数#微分法と積分法#軌跡と領域#指数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
この動画を見る
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
【高校数学】数Ⅲ-81 関数の極限⑥(対数関数)

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}\log_3 x$
②$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}} x$
③$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}}x$
④$\displaystyle \lim_{x\to \infty}\log_2 \dfrac{1}{2}$
⑤$\displaystyle \lim_{x\to \infty}\{\log_3 (x^2+1)-2\log_3 x\}$
この動画を見る
次の極限を求めよ。
①$\displaystyle \lim_{x\to \infty}\log_3 x$
②$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}} x$
③$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}}x$
④$\displaystyle \lim_{x\to \infty}\log_2 \dfrac{1}{2}$
⑤$\displaystyle \lim_{x\to \infty}\{\log_3 (x^2+1)-2\log_3 x\}$
指数法則 0乗はなぜ1か

中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体

単元:
#数Ⅱ#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
この動画を見る
中学生の知識でオイラーの公式を理解しよう VOL 6 e ネイピア数の正体
【高校数学】 数Ⅱ-143 常用対数③

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$1.2^{n} \lt 100$を満たす最大の整数nを求めよう。
②$3000 \lt (\displaystyle \frac{5}{4})^{n} \lt 6000$を満たす整数nをすべて求めよう。
この動画を見る
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$1.2^{n} \lt 100$を満たす最大の整数nを求めよう。
②$3000 \lt (\displaystyle \frac{5}{4})^{n} \lt 6000$を満たす整数nをすべて求めよう。
【高校数学】 数Ⅱ-142 常用対数②

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$2^{50}$は何桁の整数か求めよう。
②$(\displaystyle \frac{1}{3})^{30}$を小数で表したとき、小数第何位に初めて0でない数字が現れるか求めよう。
この動画を見る
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
①$2^{50}$は何桁の整数か求めよう。
②$(\displaystyle \frac{1}{3})^{30}$を小数で表したとき、小数第何位に初めて0でない数字が現れるか求めよう。
【高校数学】 数Ⅱ-141 常用対数①

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①____を底とする対数を常用対数という。
$1 \leqq a \lt 10,x=a \times 10^{π}$であるとき$\log_{10} x=\log_{10} a+n$となる。
◎$\log_{10}2=0.03010,\log_{10}3=0.4771$とする。次の値を小数第4位までもとめよう。
②$\log_{10}200$
③$\log_{10}15$
④$\log_{10}0.6$
⑤$\log_49$
この動画を見る
①____を底とする対数を常用対数という。
$1 \leqq a \lt 10,x=a \times 10^{π}$であるとき$\log_{10} x=\log_{10} a+n$となる。
◎$\log_{10}2=0.03010,\log_{10}3=0.4771$とする。次の値を小数第4位までもとめよう。
②$\log_{10}200$
③$\log_{10}15$
④$\log_{10}0.6$
⑤$\log_49$
【高校数学】 数Ⅱ-140 指数関数・対数関数の最大値・最小値②

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①関数$y=4^{x}-2^{x+1}+1$の最小値を求めよう。
②$1 \leqq x \leqq 27$において、関数$y=(\log_3x)^2-\log_3x^4-3$の最大値と最小値を求めよう。
この動画を見る
①関数$y=4^{x}-2^{x+1}+1$の最小値を求めよう。
②$1 \leqq x \leqq 27$において、関数$y=(\log_3x)^2-\log_3x^4-3$の最大値と最小値を求めよう。
【高校数学】 数Ⅱ-139 指数関数・対数関数の最大値・最小値①

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①関数$y=2^{2x}-4・2^{x}+1$の最小値を求めよう。
②関数$y=\log_3(2x-x^2)$の最大値を求めよう。
この動画を見る
①関数$y=2^{2x}-4・2^{x}+1$の最小値を求めよう。
②関数$y=\log_3(2x-x^2)$の最大値を求めよう。
【高校数学】 数Ⅱ-138 対数関数④・不等式編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。
①$\log_3 x \lt \displaystyle \frac{3}{2}$
②$\log_{\frac{1}{3}}x \geqq 2$
③$\log_3(x+2) \lt 2$
④$\log_2(x+1)+\log_2(x-2) \geqq 2$
⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
この動画を見る
◎次の不等式を解こう。
①$\log_3 x \lt \displaystyle \frac{3}{2}$
②$\log_{\frac{1}{3}}x \geqq 2$
③$\log_3(x+2) \lt 2$
④$\log_2(x+1)+\log_2(x-2) \geqq 2$
⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
【高校数学】 数Ⅱ-137 対数関数③・方程式編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。
①$\log_3 x=2$
②$\log_{\frac{1}{4}}x=-3$
③$\log_{16}(x-2)=0.5$
④$\log_2(x-1)+\log_2(x+5)=4$
⑤$\log_{\frac{1}{9}}(x+7)=\log_{\frac{1}{3}}(6x-3)+1$
この動画を見る
◎次の方程式を解こう。
①$\log_3 x=2$
②$\log_{\frac{1}{4}}x=-3$
③$\log_{16}(x-2)=0.5$
④$\log_2(x-1)+\log_2(x+5)=4$
⑤$\log_{\frac{1}{9}}(x+7)=\log_{\frac{1}{3}}(6x-3)+1$
【高校数学】 数Ⅱ-136 対数関数②・性質編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の数の大小を不等号を用いて表そう。
①$\log_32,\log_37,\log_34$
②$\log_{0.3}2,\log_{0.3}7,\log_{0.3}4$
③$\log_32,\log_96,\displaystyle \frac{1}{2}$
④$\log_{\frac{1}{2}}3,\log_{\frac{1}{4}}10,\log_{\frac{1}{8}}1$
この動画を見る
◎次の数の大小を不等号を用いて表そう。
①$\log_32,\log_37,\log_34$
②$\log_{0.3}2,\log_{0.3}7,\log_{0.3}4$
③$\log_32,\log_96,\displaystyle \frac{1}{2}$
④$\log_{\frac{1}{2}}3,\log_{\frac{1}{4}}10,\log_{\frac{1}{8}}1$
【高校数学】 数Ⅱ-135 対数関数①・グラフ編

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、関数$y=\log_a x$を、$a$を①____とすると$x$の対数関数という。
ちなみに、$y=\log_a x$のグラフは、$y=a^x$のグラフと②____に関して対称。
◎次の関数のグラフを書こう。
③$y=\log_4 x$
④$y=\log_{\frac{1}{4}} x$
この動画を見る
$a \gt 0.a≠1$とするとき、関数$y=\log_a x$を、$a$を①____とすると$x$の対数関数という。
ちなみに、$y=\log_a x$のグラフは、$y=a^x$のグラフと②____に関して対称。
◎次の関数のグラフを書こう。
③$y=\log_4 x$
④$y=\log_{\frac{1}{4}} x$
【高校数学】 数Ⅱ-134 対数とその性質④

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\log_23=a,\log_37=b$とするとき、$\log_{42}56$を$a,b$で表そう。
②$\log_{10}6=0.7782,\log_{10}12=1.0792$とするとき、$\log_{10}2,\log_{10}3$の値を求めよう。
この動画を見る
①$\log_23=a,\log_37=b$とするとき、$\log_{42}56$を$a,b$で表そう。
②$\log_{10}6=0.7782,\log_{10}12=1.0792$とするとき、$\log_{10}2,\log_{10}3$の値を求めよう。
【高校数学】 数Ⅱ-133 対数とその性質③

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎底の変換公式を用いて、次の値を求めよう。
①$\log_432$
②$\log_35・\log_581$
③$(\log_32+\log_94)(\log_29+\log_43)$
この動画を見る
◎底の変換公式を用いて、次の値を求めよう。
①$\log_432$
②$\log_35・\log_581$
③$(\log_32+\log_94)(\log_29+\log_43)$
【高校数学】 数Ⅱ-132 対数とその性質②

単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\log_216$
②$\log_ \frac{1}{3} 9$
③$\log_\sqrt{ 3 } 1$
◎次の計算をしよう。
④$\log_69+\log_64$
⑤$\log_3 2- \log_3 18$
⑥$\log_2\sqrt{ 2 }+\displaystyle \frac{1}{2}\log_23-\log_2\displaystyle \frac{\sqrt{ 3 }}{2}$
この動画を見る
◎次の値を求めよう。
①$\log_216$
②$\log_ \frac{1}{3} 9$
③$\log_\sqrt{ 3 } 1$
◎次の計算をしよう。
④$\log_69+\log_64$
⑤$\log_3 2- \log_3 18$
⑥$\log_2\sqrt{ 2 }+\displaystyle \frac{1}{2}\log_23-\log_2\displaystyle \frac{\sqrt{ 3 }}{2}$
【高校数学】 数Ⅱ-131 対数とその性質①

単元:
#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$a \gt 0.a≠1$とするとき、任意の正の数$M$に対して$a^{p}=M$となる実数$P$が、ただ1つ定まる。
この$P$を、$a$を①____とする$M$の対数といい、$\log_aM$と書く。 また、$M$をこの対数の②____という。(対数の②‗‗‗‗‗‗‗は③____)
◎次の関係を④~⑥は$p=\log_aM$、⑦~⑨は$a^{p}=M$の形で表そう。
④$3^4=81$
⑤$8^{\frac{2}{3}}=4$
⑥$9^{-\frac{1}{2}}=\displaystyle \frac{1}{3}$
⑦$\log_264=6$
⑧$\log_5\sqrt{ 5 }=\displaystyle \frac{1}{2}$
⑨$\log_{10}\displaystyle \frac{1}{1000}=-3$
この動画を見る
$a \gt 0.a≠1$とするとき、任意の正の数$M$に対して$a^{p}=M$となる実数$P$が、ただ1つ定まる。
この$P$を、$a$を①____とする$M$の対数といい、$\log_aM$と書く。 また、$M$をこの対数の②____という。(対数の②‗‗‗‗‗‗‗は③____)
◎次の関係を④~⑥は$p=\log_aM$、⑦~⑨は$a^{p}=M$の形で表そう。
④$3^4=81$
⑤$8^{\frac{2}{3}}=4$
⑥$9^{-\frac{1}{2}}=\displaystyle \frac{1}{3}$
⑦$\log_264=6$
⑧$\log_5\sqrt{ 5 }=\displaystyle \frac{1}{2}$
⑨$\log_{10}\displaystyle \frac{1}{1000}=-3$
【高校数学】 数Ⅱ-130 指数関数④・不等式編

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。
$2^{x}-32 \gt 0$
$(\displaystyle \frac{1}{3})^{x-1} \leqq \displaystyle \frac{1}{27}$
$(\displaystyle \frac{1}{4})^{x} \leqq 2^{x+2}$
$16^{x}-3・4^{x}-4 \leqq 0$
$(\displaystyle \frac{1}{3})^{2x-1}+5・(\displaystyle \frac{1}{3})^{x}-2 \lt 0$
この動画を見る
◎次の不等式を解こう。
$2^{x}-32 \gt 0$
$(\displaystyle \frac{1}{3})^{x-1} \leqq \displaystyle \frac{1}{27}$
$(\displaystyle \frac{1}{4})^{x} \leqq 2^{x+2}$
$16^{x}-3・4^{x}-4 \leqq 0$
$(\displaystyle \frac{1}{3})^{2x-1}+5・(\displaystyle \frac{1}{3})^{x}-2 \lt 0$
【高校数学】 数Ⅱ-129 指数関数③・方程式編

単元:
#数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。
①$8^{x}=4$
②$(\displaystyle \frac{1}{3})^{x}=9$
③$4^{2x-1}=2^{3x-5}$
④$3^{2x}-3^{x+1}-54=0$
⑤$2^{2x+1}-9・2^{x}+4=0$
この動画を見る
◎次の方程式を解こう。
①$8^{x}=4$
②$(\displaystyle \frac{1}{3})^{x}=9$
③$4^{2x-1}=2^{3x-5}$
④$3^{2x}-3^{x+1}-54=0$
⑤$2^{2x+1}-9・2^{x}+4=0$
