不定積分・定積分

富山大 積分 6分の1公式 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
富山大学過去問題
$y=x^2-2x+1$と$y=mx+2$とで囲まれる面積の最小値
この動画を見る
富山大学過去問題
$y=x^2-2x+1$と$y=mx+2$とで囲まれる面積の最小値
広島大 微分積分 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$C:f(x)=x^3-4x^2+5x$
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
この動画を見る
広島大学過去問題
$C:f(x)=x^3-4x^2+5x$
(1)C上の点P(p,f(p))における接線が、原点とPの間でCと交わるようなPの範囲。ただしP>0
(2)Pが(1)の範囲。接線、y軸、Cで囲まれる2つの図形の面積が等しい。Pの値。
山形大(医)整式の剰余 積の微分の導出 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2006山形大学過去問題
整式P(x)を$(x+1)^2$で割ると余りが9、$(x-1)^2$で割ると余りは1
P(x)を$(x+1)^2(x-1)^2$で割った余りを求めよ。
この動画を見る
2006山形大学過去問題
整式P(x)を$(x+1)^2$で割ると余りが9、$(x-1)^2$で割ると余りは1
P(x)を$(x+1)^2(x-1)^2$で割った余りを求めよ。
秋田大(医) 因数分解 整式の剰余 高校数学 Japanese university entrance exam questions

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2007秋田大学過去問題
因数分解せよ
(1) $x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
(2) $f(x)$を$x^2-4x+3$で割ったときの余りは$x+1$,$x^2-3x+2$で割ったときの余りは$3x-1$である。
$f(x)$を$x^3-6x^2+11x-6$で割ったときの余り。
この動画を見る
2007秋田大学過去問題
因数分解せよ
(1) $x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
(2) $f(x)$を$x^2-4x+3$で割ったときの余りは$x+1$,$x^2-3x+2$で割ったときの余りは$3x-1$である。
$f(x)$を$x^3-6x^2+11x-6$で割ったときの余り。
【高校数学】 数Ⅱ-178 定積分と面積⑦

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①放物線$y=-x^2+2x$とx軸で囲まれた部分の面積が、直線$y=ax$によって2等分されるとき、定数aの値を求めよう。
ただし、$0 \lt a \lt 2$とする。
この動画を見る
①放物線$y=-x^2+2x$とx軸で囲まれた部分の面積が、直線$y=ax$によって2等分されるとき、定数aの値を求めよう。
ただし、$0 \lt a \lt 2$とする。
【高校数学】 数Ⅱ-177 定積分と面積⑥

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①曲線$y=x^3+2x^2-3x$と、その曲線上の点(-2,6)における接線で囲まれた 図形の面積Sを求めよう。
この動画を見る
①曲線$y=x^3+2x^2-3x$と、その曲線上の点(-2,6)における接線で囲まれた 図形の面積Sを求めよう。
【高校数学】 数Ⅱ-176 定積分と面積⑤

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎放物線$y=x^2$上に2点A(-1,1)、B(2,4)がある。
①点Aにおける放物線の接線の方程式を求めよう。
②点Bにおける放物線の接線の方程式を求めよう。
③①、②で求めた2つの接線と、放物線で囲まれた部分の面積Sを求めよう。
この動画を見る
◎放物線$y=x^2$上に2点A(-1,1)、B(2,4)がある。
①点Aにおける放物線の接線の方程式を求めよう。
②点Bにおける放物線の接線の方程式を求めよう。
③①、②で求めた2つの接線と、放物線で囲まれた部分の面積Sを求めよう。
【高校数学】 数Ⅱ-175 定積分と面積④

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の定積分を求めよう。
①$\int_0^4 | x-3 | dx$
②$\int_{-2}^3 | x^2-x | dx$
この動画を見る
◎次の定積分を求めよう。
①$\int_0^4 | x-3 | dx$
②$\int_{-2}^3 | x^2-x | dx$
【高校数学】 数Ⅱ-174 定積分と面積③

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①曲線$y=x^3-6x^2+8x$とx軸で囲まれた2つの部分の面積の和Sを求めよう。
この動画を見る
①曲線$y=x^3-6x^2+8x$とx軸で囲まれた2つの部分の面積の和Sを求めよう。
【高校数学】 数Ⅱ-173 定積分と面積②

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の曲線や直線で囲まれた図形の面積Sを求めよう。
①$y=x^2-3x+5,y=2x-1$
②$y=x^2-4$,x軸
③$y=x^2-6x+7, y=-x^2+2x+1$
この動画を見る
◎次の曲線や直線で囲まれた図形の面積Sを求めよう。
①$y=x^2-3x+5,y=2x-1$
②$y=x^2-4$,x軸
③$y=x^2-6x+7, y=-x^2+2x+1$
【高校数学】 数Ⅱ-172 定積分と面積①

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の曲線や直線で囲まれた図形の面積Sを求めよう。
①$y=x^2+1$、x軸、$x=-1、x=2$
②$y=x^2+2x$、x軸、$x=1、x=3$
③$y=-x^2+4$、x軸
この動画を見る
◎次の曲線や直線で囲まれた図形の面積Sを求めよう。
①$y=x^2+1$、x軸、$x=-1、x=2$
②$y=x^2+2x$、x軸、$x=1、x=3$
③$y=-x^2+4$、x軸
【高校数学】 数Ⅱ-171 定積分で表された関数②

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①等式$f(x)=3x^2-2\int_{-1}^1 f(t)dt$を満たす関数f(x)を求めよう。
②$f(x)=\int_1^x (2t^2-6t-20) dt$の極大値を求めよう。
この動画を見る
①等式$f(x)=3x^2-2\int_{-1}^1 f(t)dt$を満たす関数f(x)を求めよう。
②$f(x)=\int_1^x (2t^2-6t-20) dt$の極大値を求めよう。
【高校数学】 数Ⅱ-170 定積分で表された関数①

単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$\int_2^x (3t^2-4t-1) dt$をxの式で表そう。また、そのxの関数を微分しよう。
②$\int_x^a f(t)dt=x^2+2x-3$を満たす$f(x)$と定数aの値を求めよう。
この動画を見る
①$\int_2^x (3t^2-4t-1) dt$をxの式で表そう。また、そのxの関数を微分しよう。
②$\int_x^a f(t)dt=x^2+2x-3$を満たす$f(x)$と定数aの値を求めよう。