数Ⅱ
琉球大 剰余 二項定理
単元:
#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.
1987琉球大過去
この動画を見る
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.
1987琉球大過去
高次方程式の有理数解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
この動画を見る
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
N進法の3次方程式
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
何進法か?
$x^3-12x^2+59x-93=0$が3つの整数解をもち,それらが等差数列となっている.
この動画を見る
何進法か?
$x^3-12x^2+59x-93=0$が3つの整数解をもち,それらが等差数列となっている.
整式の剰余 大分大(医)の復習問題
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^n$を$x^4+1$で割った余りを求めよ.
大分大(医)過去問
この動画を見る
$n$を自然数とする.
$x^n$を$x^4+1$で割った余りを求めよ.
大分大(医)過去問
日本医科大学 三次方程式の解が等比数列
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
この動画を見る
$p,q$は実数である.
$x^3+6x^2-px-q=0$は3つの実数解である.
$4,\alpha,\beta$をもち,3解の順番を適当に入れかえると等比数列になる$p,q,\alpha,\beta$を求めよ.
2018日本医科大過去問
【数Ⅱ】微分法と積分法:x軸の周りに1回転してできる回転体の体積の考え方! 次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。y=2x+3,x=0,x=2,x軸
単元:
#数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。
y=2x+3
x=0
x=2
x軸
この動画を見る
次の直線で囲まれた図形をx軸の周りに1回転してできる回転体の体積を求めよ。
y=2x+3
x=0
x=2
x軸
【数Ⅱ】微分法と積分法:ax+bの積分、∫(x+8)³dxの不定積分を求めよ。
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle \int_{}^{}(x+8)^3dx$の不定積分を求めよ。
この動画を見る
$\displaystyle \int_{}^{}(x+8)^3dx$の不定積分を求めよ。
6次方程式の6つの解
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
複数の解法でこれを解け.
$z^6+1=0$
この動画を見る
複数の解法でこれを解け.
$z^6+1=0$
【数学】中学生でも分かるマイナス乗~指数がマイナスのとき~
一橋大 整式の剰余
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(z)=z^{2n}+z^n+1$を
$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり
を求めよ.$n$は自然数である.
一橋大学過去問
この動画を見る
$f(z)=z^{2n}+z^n+1$を
$z^2+z+1$で割ったあまり
$z^2-z+1$で割ったあまり
を求めよ.$n$は自然数である.
一橋大学過去問
20年5月数学検定1級1次試験(微分)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.
20年5月数学検定1級1次試験(微分)過去問
この動画を見る
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.
20年5月数学検定1級1次試験(微分)過去問
20年5月数学検定1級1次試験(三角関数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
20年5月数学検定1級1次試験(三角関数)過去問
この動画を見る
$\boxed{2}$
$\tan(2Arc\tan\dfrac{1}{3}+Arc\tan\dfrac{1}{12})$
$Arc\tan a=\tan^{-1}a=t\Leftrightarrow t=\tan a$
$\tan(\tan^{-1}a)=a$
$\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}$
20年5月数学検定1級1次試験(三角関数)過去問
指数関数 2次関数 大分大
単元:
#数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.
2018大分大過去問
この動画を見る
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.
2018大分大過去問
3次関数 三角形の面積最大 お茶の水女子大
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.
1987お茶の水女子大過去問
この動画を見る
$f(x)=x^3-6x^2+8x$,3点$O,A(3,f(3))$,$P(t,f(t)),0\lt t\leqq 4,t\neq 3$である.
$\triangle OAP$の面積が最大となる$t$の値を求めよ.
1987お茶の水女子大過去問
20年5月数検準1級1次試験(楕円)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
この動画を見る
$\boxed{6}$
2点$A(0,-3),B(0,1)$から距離の和が6である楕円の方程式を求めよ.
20年5月数検準1級1次試験(楕円)過去問
20年5月数検準1級1次試験(極限)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
この動画を見る
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.
20年5月数検準1級1次試験(極限)過去問
整式の剰余 大分大(医)その2
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
(1)$x^n$を$x^5-1$で割った余りを求めよ.
(2)$x^{4n}+x^{3n}+x^{2n}+x^n$を$x^4+x^3+x^2+x+1$で割った余りを求めよ.
2005大分大(医)過去問
この動画を見る
$n$は自然数である.
(1)$x^n$を$x^5-1$で割った余りを求めよ.
(2)$x^{4n}+x^{3n}+x^{2n}+x^n$を$x^4+x^3+x^2+x+1$で割った余りを求めよ.
2005大分大(医)過去問
整式の剰余 大分大(医)
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^n$を$x^5-1$で割った余りを求めよ.
2005大分大(医)過去問
この動画を見る
$n$は自然数である.
$x^n$を$x^5-1$で割った余りを求めよ.
2005大分大(医)過去問
20年5月数学検定準1級1次試験(複素数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$
(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$
20年5月数学検定準1級1次試験(複素数)過去問
整式の剰余(訂正版)
単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$x^{6n}$を$x^4+x^2+1$で割った余りを求めよ.
この動画を見る
$n$は自然数である.
$x^{6n}$を$x^4+x^2+1$で割った余りを求めよ.
整式の剰余
20年5月数学検定準1級1次試験(円の方程式)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#図形と方程式#円と方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
この動画を見る
$\boxed{2}$
円$C_1$の中心は$(-6,2)$で直線$\ell:3x-4y+1=0$に接する.
このとき円$C_1$が$x$軸から切り取る線分の長さ$\ell^1$を求めよ.
20年5月数学検定準1級1次試験(円の方程式)過去問
20年5月数学検定準1級1次試験(積分)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
この動画を見る
$\boxed{5}$
(1)$\displaystyle \int_{}^{}\dfrac{dx}{\sin 2x}$
(2)$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\dfrac{dx}{\sin 2x}$
20年5月数学検定準1級1次試験(積分)過去問
20年5月数学検定準1級1次試験(三角関数)
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
この動画を見る
$\boxed{1}$
$0\leqq \theta \lt 2\pi$
$\sqrt2 \cos \theta -\sqrt2 \sin \theta=1$
20年5月数学検定準1級1次試験(三角関数)過去問
【数Ⅱ】複素数と方程式:3次方程式が異なる3つの解を持つ条件:方程式x³+(a-1)x-a=0が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
この動画を見る
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
【数Ⅱ】複素数と方程式:3次方程式が2重解を持つ条件:x³+6x²+ax+b=0が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材:
#ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x^3+6x^2+ax+b=0$が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
この動画を見る
$x^3+6x^2+ax+b=0$が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
複素数の5次方程式
単元:
#数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.($\sin,\cos$は使わない)
$x^5=i$
この動画を見る
これを解け.($\sin,\cos$は使わない)
$x^5=i$
複素数 慈恵医大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.
(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.
2004慈恵医大過去問
この動画を見る
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.
(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.
2004慈恵医大過去問
複素数 福井大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha^3=-4+\sqrt{11}i$,$c=\alpha+\overline{\alpha}$である.
(1)$\vert \alpha \vert$の値を求めよ.
(2)$c^3-9c$の値を求めよ.
(3)$c$の値を求めよ.
1999福井大過去問
この動画を見る
$\alpha^3=-4+\sqrt{11}i$,$c=\alpha+\overline{\alpha}$である.
(1)$\vert \alpha \vert$の値を求めよ.
(2)$c^3-9c$の値を求めよ.
(3)$c$の値を求めよ.
1999福井大過去問
複素数 日本大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$,$\displaystyle \sum_{n=1}^{23}z^n$
2000日大過去問
この動画を見る
これを解け.
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$,$\displaystyle \sum_{n=1}^{23}z^n$
2000日大過去問