数Ⅱ - 質問解決D.B.(データベース) - Page 61

数Ⅱ

三重大 2変数関数の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$が$x^2+2xy+2y^2=1$を満たすとき、$2x^2+2xy+y^2$の最大値を求めよ

出典:三重大学 過去問
この動画を見る 

一橋大 複素数 インド式掛け算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数
$w=a+bi,z=c+di$
$w^2z=1+18i$
$a,b,c,d$を求めよ

出典:2000年一橋大学 過去問
この動画を見る 

慶應義塾大 指数方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-3a4^x+4a=0(a \neq 0)$の異なる実数解の個数を求めよ

出典:1997年慶應義塾大学 過去問
この動画を見る 

愛媛大 三次関数の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=ax^3+3a^2x^2+1(a \neq 0)$
$2 \leqq x \leqq 4$における最小値が$f(2)$になるような$a$の範囲を求めよ


出典:1998年愛媛大学 過去問
この動画を見る 

九州大 三次関数 極値の差 ヨビノリ技

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-kx^2+kx+1$が極大値・極小値をもち、その差が$4|k|^3$
$k$の値を求めよ

出典:2019年九州大学 過去問
この動画を見る 

北海道大 三次方程式 実数解条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ

(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2019年北海道大学 過去問
この動画を見る 

東京電機大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#東京電機大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=3x^2-2\displaystyle \int_{-1}^{0} xf(t) dt+\displaystyle \int_{1}^{2} f(t) dt$
$f(x)$を求めよ

出典:2018年東京電機大学 過去問
この動画を見る 

順天堂(医)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$
$w=z+z^2+z^4$

(1)
 ①$w+\bar{ w }$
 ②$w・\bar{ w }$

(2)
 ①$\cos \displaystyle \frac{2}{7}\pi+\cos \displaystyle \frac{4}{7}\pi+\cos \displaystyle \frac{8}{7}\pi$
 ②$\sin \displaystyle \frac{2}{7}\pi+\sin \displaystyle \frac{4}{7}\pi+\sin \displaystyle \frac{8}{7}\pi$


出典:2019年順天堂大学医学部 過去問
この動画を見る 

お茶の水女子大 整式の剰余 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)$を$x^2+x+1$で割ると$x+2$余り、$x^2+1$で割ると$1$余る
$f(x)$を$(x^2+x+1)(x^2+1)$で割った余りを求めよ

出典:2006年お茶の水女子大学 過去問
この動画を見る 

二項展開

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x-2)^{50}$の$x^k$の係数を$a_k$
$a_k$が最大・最小になる$k$の値を求めよ
この動画を見る 

名古屋市立 4次関数と接線

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4+2x^3-x^2$
点$A(a,f(a))$における接線と$f(x)$が$A$以外の2点$P,Q$で交わる

(1)
$a$の範囲を求めよ

(2)
点$A$が線分$PQ$上にあるような$a$の範囲を求めよ

出典:1995年名古屋市立大学 過去問
この動画を見る 

岡山大 対数方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_2|3x^3-18x+4\sqrt{ 2 }|=k$の異なる実数解の個数を求めよ$(k$実数$)$

出典:1995年岡山大学 過去問
この動画を見る 

自治医大 関数の最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ

出典:自治医科大学 過去問
この動画を見る 

千葉大 複素数 極形式 7乗根

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
この動画を見る 

京都大 三次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x(x-3)(x+3)+3k(x-1)(x+1)=0$ $(k \gt 0)$

(1)
3つの実数解をもつことを示せ

(2)
ただ1つの正の解が$1$と$1+\displaystyle \frac{2}{k}$の間にあることを示せ

出典:1967年京都大学 過去問
この動画を見る 

数学諦めて7年!私文数学超苦手女子が2点を通る直線の式が暗算数秒で出せるのか?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2点を通る直線の式 解説動画です
この動画を見る 

熊本大 対数関数の最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$


$f(x)=log_2x+log_2(6-x)^2$

出典:熊本大学 過去問
この動画を見る 

九州大 良問再投稿 合成公式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin 10^{ \circ }$は$8x^3-6x+1=0$の解であることを示し、他の2解も求めよ

出典:1975年九州大学 過去問
この動画を見る 

東京電機大 4次関数と直線の共有点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#東京電機大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^3+x$と$(1,0)$を通り傾き$k$の直線との共有点の個数を求めよ

出典:2017年東京電機大学 過去問
この動画を見る 

大阪市立(医)微分 接線と交点

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-4x^3+4x^2+1$
点$P(t,f(t))$における接点が$f(x)$と点$P$以外の異なる2点で交わる$t$の範囲は?

出典:大阪市立大学 医学部医学科 過去問
この動画を見る 

横浜市立(医)3項間漸化式 良問再投稿

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$

出典:2016年横浜市立大学 医学部 過去問
この動画を見る 

北里大 三次関数 最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#北里大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$
$f(x)=2x^3-3(a+1)x^2+6ax+1$
$0 \leqq x \leqq 2$において$f(x)$が$x=2$で最大値を取る
$a$の条件を求めよ

出典:北里大学 過去問
この動画を見る 

三次関数の基本性質 変曲点について点対称 畳8畳

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#徳島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$f(x)=x^3-6ax^2+9a^2x+b$
$0 \leqq x \leqq 1$における最大値が$\displaystyle \frac{1}{2},$最小値が$0$となる
$a,b$の値を求めよ

出典:徳島文理大学 過去問
この動画を見る 

名古屋市立大 4次関数と接線 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-2x^2+x$

(1)
$f(x)$と2点で接する直線の方程式は?

(2)
$f(x)$と$(1)$の直線で囲まれた面積は?

出典:名古屋市立大学 過去問
この動画を見る 

大阪大 対数方程式 恒等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数の組$(x,y,z)$で、どのような整数$l,m,n$に対しても$l・10^{x-y}-nx+l・10^{y-z}+m・10^{x-z}=$
13l+36m+ny$が成り立つものを求めよ

出典:2011年大阪大学 過去問
この動画を見る 

青山学院大 三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin^2\theta-k\sin\theta+\displaystyle \frac{1}{4}=0$
$(0 \leqq \theta \lt \pi)$

解の個数を求めよ

出典:2009年青山学院大学 過去問
この動画を見る 

防衛医大 複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{1+\sqrt{ 3 }i}{2},\beta=\displaystyle \frac{1-\sqrt{ 3 }i}{2}$

$\gamma=\displaystyle \frac{\beta^2-4\beta +3}{\alpha^{n+2}-\alpha^{n+1}+\alpha^{n}+\alpha^{3}-2\alpha^{2}+5\alpha-2}$

$\gamma^3$の値を求めよ

出典:2011年防衛医科大学校 過去問
この動画を見る 

九州大 数式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
この動画を見る 

名古屋市立(医) 関数 微分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0$
$C_{a}:y=x(x-a)(x-2a)^2$

(1)
$(1,-1)$を通る$C_{a}$がただ1つであることを示せ

(2)
$(p,q)$を通る$C_{a}$がただ1つであるような$(p,q)$の範囲を図示せよ。
ただし$p \gt 0$

出典:1995年名古屋市立大学 医学部 過去問
この動画を見る 

東大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^2$と$y=-(x-a)^2+b$とによって囲まれる面積が$\displaystyle \frac{1}{3}$となるための必要十分条件を$a,b$を用いて表せ

出典:1975年東京大学 過去問
この動画を見る 
PAGE TOP