数Ⅲ - 質問解決D.B.(データベース) - Page 19

数Ⅲ

福田のわかった数学〜高校3年生理系060〜微分(5)陰関数の微分(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(5) 陰関数の微分(2)\\
\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 上の点(p,q)での接線の方程式\\
は \frac{px}{a^2}+\frac{qy}{b^2}=1 であることを示せ。
\end{eqnarray}
この動画を見る 

【数学Ⅲ/微分】三角関数の微分②(積の微分、2倍角の公式など)

アイキャッチ画像
単元: #三角関数#微分法#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\displaystyle \frac{1}{\sin^2x}$

(2)
$y=x\sin3x$

(3)
$y=\sin x\cos x$
この動画を見る 

【数学Ⅲ/微分】三角関数の微分①(合成関数の微分)

アイキャッチ画像
単元: #微分法#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の関数を微分せよ。
(1)
$y=\sin x-\tan x$

(2)
$y=\cos(3x+1)$

(3)
$y=\cos x^2$

(4)
$y=\sin^3x$
この動画を見る 

【数学Ⅲ/微分】逆関数の微分

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
逆関数の微分法の公式を用いて、次の関数を微分せよ。

$y=x^{\frac{1}{5}}$
この動画を見る 

福田のわかった数学〜高校3年生理系059〜微分(4)陰関数の微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(4) 陰関数の微分\\
\frac{x^2}{4}-\frac{y^2}{9}=1について\frac{dy}{dx},\frac{d^2y}{dx^2}を\\
xとyを用いて表せ。ただし、y≠0とする。
\end{eqnarray}
この動画を見る 

お茶の水女子大 3次関数と放物線

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3+(k+1)x^2+kx$と$y=x^2q$とが全ての実数$q$において
共有点がただ1つである$k$の範囲を求めよ.

2021お茶の水女子大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系058〜微分(3)媒介変数表示の微分

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#色々な関数の導関数#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数列\textrm{III} 微分(3) 媒介変数表示\\
x=a(\theta-\sin\theta), y=a(1-\cos\theta)のとき、\frac{dy}{dx},\frac{d^2y}{dx^2}を\thetaで表せ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系057〜微分(2)逆関数の微分

アイキャッチ画像
単元: #微分とその応用#微分法#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(2) 逆関数の微分\\
\\
y=\tan x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
\\
の逆関数の第2次導関数を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系056〜微分(1)逆関数の微分

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(1) 逆関数の微分\\
y=\sin x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})\\
の逆関数の導関数を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系055〜格子点の個数と極限

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 格子点の個数と極限\\
右図の斜線部分(※動画参照)に含まれる\\
格子点の総数をa_nとする。\\
\lim_{n \to \infty}\frac{a_n}{n^2} を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系054〜連続と微分可能(5)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(5)\\
f(x)=\left\{
\begin{array}{1}
x^3+px (x \geqq 2)\\
qx^2-px (x \lt 2)
\end{array}\right.  
がx=2に\\
おいて微分可能となるp,qを求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系053〜極限(53)連続と微分可能(4)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(4)\\
f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.  のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(3)\\
f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.  のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系051〜極限(51)連続と微分可能(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(2)\\
f(x)=\left\{\begin{array}{1}
\sin\displaystyle\frac{1}{x} (x≠0)\\
0   (x=0)
\end{array}\right.  
のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系050〜極限(50)連続と微分可能(1)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(1)\\
f(x)がx=aで微分可能 \Rightarrow f(x)はx=aで連続\\
を示せ。また、逆が成り立たないことを示せ。
\end{eqnarray}
この動画を見る 

東京海洋大 3次関数の基本

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^3-x$と$y=ax+b$が相異なる3点で交わる$a,b$の条件を求めよ.

2021東京海洋大過去問
この動画を見る 

福田のわかった数学〜高校3年生理系049〜極限(49)中間値の定理(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 中間値の定理(3)\\
Aさんは300km離れた地点まで車でちょうど5時間かけて移動した。\\
このときこの300kmの中のどこか60kmの区間を\\
ちょうど1時間で通過したことを示せ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系048〜極限(48)中間値の定理(2)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 中間値の定理(2)\\
関数f(x),g(x)は区間[a,b]で連続でf(x)の最大値はg(x)の最大値よりも大きく、\\
f(x)の最小値はg(x)の最小値よりも小さい。このとき、方程式f(x)=g(x)はa \leqq x \leqq b\\
に実数解をもつことを示せ。
\end{eqnarray}
この動画を見る 

【数Ⅲ】積分法の応用:体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C:y=ax^2$ と直線 $\ell:y=bx$とで囲まれた図形をDとする。(a,bを正の定数とする)
Dを $\ell$のまわりに1回転してできる立体の体積Vを求めよ。
この動画を見る 

福田のわかった数学〜高校3年生理系047〜極限(47)中間値の定理(1)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 中間値の定理(1)\\
方程式\sqrt x-2\log_3x=0 は、\\
1 \lt x \lt 3に実数解をもつことを示せ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系046〜極限(46)関数の連続性(3)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(3)\\
f(x)=\left\{\begin{array}{1}
\displaystyle\frac{x^2}{|x|} (x≠0)\\
0  (x=0)\\
\end{array}\right.\\
\\
は、x=0で連続か、調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系045〜極限(45)関数の連続性(2)

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(2)\\
f(x)=[x^2](x+1)\\
はx=0で連続かまた、x=1で連続か、調べよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系044〜極限(44)関数の連続性(1)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 関数の連続性(1)\\
\\
f(x)=\lim_{n \to \infty}\frac{x^{2n}-x^{2n-1}+ax^2+bx}{x^{2n}+1}\\
\\
が連続関数となるようにaとbを定めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系043〜極限(43)有名な極限の証明(3)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(3)\\
\lim_{x \to \infty}\frac{\log x}{x}=0を既知として\\
\lim_{x \to +0}x\log x を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系042〜極限(42)有名な極限の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(2)\\
\lim_{x \to \infty}xe^{-x}=0を既知として\\
\lim_{x \to \infty}\frac{\log x}{x} を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系041〜極限(41)有名な極限の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(1)\\
(1)x \gt 0でe^x \gt 1+x+\frac{x^2}{2} を示せ。\\
\\
(2)\lim_{x \to \infty}xe^{-x} を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} 曲線y=\frac{e^x+e^{-x}}{2} (x \gt 0)をCで表す。Q(X,Y)を中心とする半径rの円が曲線C\\
と、点P(t,\frac{e^t+e^{-t}}{2})\ (ただしt \gt 0)において共通の接線をもち、さらにX \lt tであるとする。\\
このときXおよびYをtの式で表すと\\
X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }\\
となる。tの関数X(t),Y(t)をX(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }により定義する。全て\\
のt \gt 0に対してX(t) \gt 0となるための条件は、rが不等式\boxed{\ \ (う)\ \ }を満たすことで\\
ある。\boxed{\ \ (う)\ \ }が成り立たないとき、関数Y(t)はt=\boxed{\ \ (え)\ \ }において最小値\boxed{\ \ (お)\ \ }\\
をとる。また\boxed{\ \ (う)\ \ }が成り立つとき、YをXの関数と考えて、(\frac{dY}{dX})^2+1をYの式で\\
表すと(\frac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ } となる。\\
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系040〜極限(40)関数の極限、色々な極限(10)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(10)\\
\lim_{x \to \infty}(2x+3)\sin(\log(x+3)-\log x)\\
を求めよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校3年生理系039〜極限(39)関数の極限、色々な極限(9)

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(9)\\
\lim_{x \to 0}\frac{e^{2x}-e^{-x}}{x} を求めよ。
\end{eqnarray}
この動画を見る 

国際数学オリンピック 積和

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2\pi}{7}+\cos\dfrac{3\pi}{7}=\dfrac{1}{2}$を示せ.

国際数学オリンピック
この動画を見る 
PAGE TOP