数Ⅲ
【高校数学】東京大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分92日目~47都道府県制覇への道~【㉟東京】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【東京大学 2024】
座標空間内に3点A(1,0,0),B(0,1,0),C(0,0,1)をとり、D を線分ACの中点とする。三角形ABDの周および内部をx軸のまわりに1回転させて得られる立体の体積を求めよ。
この動画を見る
【東京大学 2024】
座標空間内に3点A(1,0,0),B(0,1,0),C(0,0,1)をとり、D を線分ACの中点とする。三角形ABDの周および内部をx軸のまわりに1回転させて得られる立体の体積を求めよ。
【高校数学】横浜国立大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分91日目~47都道府県制覇への道~【㉞神奈川】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【横浜国立大学(後) 2023】
$\displaystyle \int_{log\frac{π}{4}}^{log\frac{π}{2}}\frac{e^{2x}}{\{sin(e^x)\}^2}dx$
この動画を見る
【横浜国立大学(後) 2023】
$\displaystyle \int_{log\frac{π}{4}}^{log\frac{π}{2}}\frac{e^{2x}}{\{sin(e^x)\}^2}dx$
【高校数学】新潟大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分90日目~47都道府県制覇への道~【㉝新潟】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【新潟大学 2023】
$a,b$を正の数とし、座標平面上の曲線
$C_1:y=e^{ax}, C_2:y=\sqrt{2x-b}$
を考える。次の問いに答えよ。
(1)関数$y=e^{ax}$,と関数$y=\sqrt{2x-b}$の導関数を求めよ。
(2)曲線$C_1$と曲線$C_2$が1点$P$を共有し、その点において共通の接線をもつとする。この時,$b$と点$P$の座標を$a$を用いて表せ。
(3) (2)において、曲線$C_1$,曲線$C_2$,$x$軸,$y$軸で囲まれる図形の面積を$a$を用いて表せ。
この動画を見る
【新潟大学 2023】
$a,b$を正の数とし、座標平面上の曲線
$C_1:y=e^{ax}, C_2:y=\sqrt{2x-b}$
を考える。次の問いに答えよ。
(1)関数$y=e^{ax}$,と関数$y=\sqrt{2x-b}$の導関数を求めよ。
(2)曲線$C_1$と曲線$C_2$が1点$P$を共有し、その点において共通の接線をもつとする。この時,$b$と点$P$の座標を$a$を用いて表せ。
(3) (2)において、曲線$C_1$,曲線$C_2$,$x$軸,$y$軸で囲まれる図形の面積を$a$を用いて表せ。
【高校数学】山梨大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分89日目~47都道府県制覇への道~【㉜山梨】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【山梨大学 2023】
等式$f(x)=sin2x+\displaystyle \int_0^{\frac{π}{2}}tf(t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る
【山梨大学 2023】
等式$f(x)=sin2x+\displaystyle \int_0^{\frac{π}{2}}tf(t)dt$を満たす関数$f(x)$を求めよ。
【高校数学】信州大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分88日目~47都道府県制覇への道~【㉛長野】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【信州大学 2023】
tを実数とし、座標空間内の2点$P(0,0,t^2-1), Q(t,1,e^t+e^{-t}-e-e^{-1})$を考える。tを$-1≦t≦1$の範囲で動かすとき、線分PQが通過してできる曲面および2平面$y=1,z=0$で囲まれてできる立体の体積を求めよ。
この動画を見る
【信州大学 2023】
tを実数とし、座標空間内の2点$P(0,0,t^2-1), Q(t,1,e^t+e^{-t}-e-e^{-1})$を考える。tを$-1≦t≦1$の範囲で動かすとき、線分PQが通過してできる曲面および2平面$y=1,z=0$で囲まれてできる立体の体積を求めよ。
【高校数学】静岡大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分87日目~47都道府県制覇への道~【㉚静岡】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【静岡大学 2023】
関数$f(x)=x^3e^{-x^2}$について、次の問いに答えよ。ただし、$e$は自然対数の底とする。必要ならば$\displaystyle \lim_{x \to \infty}\frac{x^3}{e^{x^2}}=0$を用いてもよい。
(1) 関数$f(x)$の増減を調べ、極値を求めよ。
(2) $a>0$とする。方程式$e^{x^2}-ax^3=0$の実数解の個数を求めよ。
(3) 曲線$y=f(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ。
この動画を見る
【静岡大学 2023】
関数$f(x)=x^3e^{-x^2}$について、次の問いに答えよ。ただし、$e$は自然対数の底とする。必要ならば$\displaystyle \lim_{x \to \infty}\frac{x^3}{e^{x^2}}=0$を用いてもよい。
(1) 関数$f(x)$の増減を調べ、極値を求めよ。
(2) $a>0$とする。方程式$e^{x^2}-ax^3=0$の実数解の個数を求めよ。
(3) 曲線$y=f(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ。
名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!#shorts #高校数学 #名古屋大学
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!
この動画を見る
名古屋大学2024年の確率と積分の融合問題をその場で解きながら解説してみた!
【高校数学】富山大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分86日目~47都道府県制覇への道~【㉙富山】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#数学(高校生)#富山大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【富山大学 2023】
(1) $\displaystyle t=tan\frac{x}{2} (-π<x<π)$とおく。
この時、$\displaystyle sinx=\frac{2t}{1+t^2}, cosx=\frac{1-t^2}{1+t^2}, \frac{dx}{dt}=\frac{2}{1+t^2}$であることを示せ。
(2) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{dx}{1+sinx+cosx}$を求めよ。
(3) 2つの定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx, \int_0^{\frac{π}{2}}\frac{1+2cosx}{1+sinx+cosx}dx$が等しいことを示せ。
(4) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx$を求めよ。
(5) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{sinx}{1+sinx+cosx}dx$を求めよ。
この動画を見る
【富山大学 2023】
(1) $\displaystyle t=tan\frac{x}{2} (-π<x<π)$とおく。
この時、$\displaystyle sinx=\frac{2t}{1+t^2}, cosx=\frac{1-t^2}{1+t^2}, \frac{dx}{dt}=\frac{2}{1+t^2}$であることを示せ。
(2) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{dx}{1+sinx+cosx}$を求めよ。
(3) 2つの定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx, \int_0^{\frac{π}{2}}\frac{1+2cosx}{1+sinx+cosx}dx$が等しいことを示せ。
(4) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{1+2sinx}{1+sinx+cosx}dx$を求めよ。
(5) 定積分$\displaystyle \int_0^{\frac{π}{2}}\frac{sinx}{1+sinx+cosx}dx$を求めよ。
【高校数学】金沢大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分85日目~47都道府県制覇への道~【㉘石川】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【金沢大学 2024】
次の問いに答えよ。
(1) 関数$f(x)=e^{-x}sinx$と$g(x)=e^{-x}cosx$の導関数$f'(x),g'(x)$を求めよ。
(2) 整数$k$に対し、定積分$\displaystyle \int_{kπ}^{(k+1)π}e^{-x}sinxdx$を求めよ。
(3) 極限$\displaystyle \lim_{n\to \infty}\int_0^{nπ}e^{-x}|sinx|dx$を求めよ。
この動画を見る
【金沢大学 2024】
次の問いに答えよ。
(1) 関数$f(x)=e^{-x}sinx$と$g(x)=e^{-x}cosx$の導関数$f'(x),g'(x)$を求めよ。
(2) 整数$k$に対し、定積分$\displaystyle \int_{kπ}^{(k+1)π}e^{-x}sinxdx$を求めよ。
(3) 極限$\displaystyle \lim_{n\to \infty}\int_0^{nπ}e^{-x}|sinx|dx$を求めよ。
【高校数学】岐阜大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分84日目~47都道府県制覇への道~【㉗岐阜】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【岐阜大学 2024】
関数$f(x)=x^2-1-2xlogx (x>0)$を考える。以下の問に答えよ。
ただし、$logx$は$x$の自然対数である。
(1) 関数$f(x)$を微分せよ。
(2) 曲線$y=f(x)$の変曲点の座標を求めよ。
(3) 曲線$y=f(x), x$軸, および2直線$\displaystyle x=\frac{1}{2}, x=2$で囲まれた部分の面積$S$を求めよ。
この動画を見る
【岐阜大学 2024】
関数$f(x)=x^2-1-2xlogx (x>0)$を考える。以下の問に答えよ。
ただし、$logx$は$x$の自然対数である。
(1) 関数$f(x)$を微分せよ。
(2) 曲線$y=f(x)$の変曲点の座標を求めよ。
(3) 曲線$y=f(x), x$軸, および2直線$\displaystyle x=\frac{1}{2}, x=2$で囲まれた部分の面積$S$を求めよ。
【高校数学】福井大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分83日目~47都道府県制覇への道~【㉖福井】【毎日17時投稿】
単元:
#積分とその応用#定積分#数学(高校生)#福井大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【福井大学 2023】
$f(t)=2e^t-e^{2t}, g(t)=te^t$とし、$f(t)$が極大となる$t$の値を$α$、$f(t)=0$となる$t$の値を$β$とする。$xy$平面上の曲線$C$を$x=f(t), y=g(t) (α≦t≦β)$で与える。以下の問いに答えよ。
(1) $α$と$β$の値を求めよ。
(2) $α<t<β$の範囲で、$\frac{dy}{dx}$を$t$の関数として表せ。
(3) 曲線$C$と$x$軸および$y$軸で囲まれた図形の面積を求めよ。
この動画を見る
【福井大学 2023】
$f(t)=2e^t-e^{2t}, g(t)=te^t$とし、$f(t)$が極大となる$t$の値を$α$、$f(t)=0$となる$t$の値を$β$とする。$xy$平面上の曲線$C$を$x=f(t), y=g(t) (α≦t≦β)$で与える。以下の問いに答えよ。
(1) $α$と$β$の値を求めよ。
(2) $α<t<β$の範囲で、$\frac{dy}{dx}$を$t$の関数として表せ。
(3) 曲線$C$と$x$軸および$y$軸で囲まれた図形の面積を求めよ。
【高校数学】名古屋大学2024年の手強い積分の問題をその場で解説しながら解いてみた!毎日積分82日目~47都道府県制覇への道~【㉕愛知】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
この動画を見る
【名古屋大学 2024】
袋の中にいくつかの赤玉と白玉が入っている。すべての玉に対する赤玉の割合を$p(0≦p≦1)$とする。袋から無作為に玉を一つ取り出して袋に戻す試行を行う。試行を$n$回行うとき、赤玉を$k$回以上取り出す確率を$f(k)$をおく。
(1) $n≧2$に対して、$f(1), f(2)$を求めよ。
(2) $k=1,2, ・・・・・・,n$に対して、等式
$\displaystyle f(k)=\frac{n!}{(k-1)!(n-k)!}\int_0^px^{k-1}(1-x)^{n-k}dx$
を示せ。
(3) 自然数$k$に対して、定積分
$\displaystyle I=\int_0^{\frac{1}{2}}x^k(1-x)^k dx$
を求めよ。
【高校数学】ワイエルシュトラス置換って何!?毎日積分81日目~47都道府県制覇への道~【㉔三重】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【三重大学 2009】
$\displaystyle \int_\frac{π}{3}^{\frac{π}{2}}\frac{1}{1+sinθ-cosθ}dθ$
この動画を見る
【三重大学 2009】
$\displaystyle \int_\frac{π}{3}^{\frac{π}{2}}\frac{1}{1+sinθ-cosθ}dθ$
【高校数学】滋賀医科大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分80日目~47都道府県制覇への道~【㉓滋賀】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
この動画を見る
【滋賀医科大学 2023】
実数全体を定義域とする微分可能な関数$f(x)$は、常に$f(x)>0$であり、等式
$\displaystyle f(x)=1+\int_0^x e^t(1+t)f(t)dt$
を満たしている。
(1) $f(0)$を求めよ。
(2) $logf(x)$の導関数$(logf(x))’$を求めよ。
(3) 関数$f(x)$を求めよ。
(4) 方程式$f(x)=\frac{1}{\sqrt{2}}$を解け。
【高校数学】毎日積分78日目~47都道府県制覇への道~【㉑奈良】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) $log|x+\sqrt{1+x^2}|$
(ii) $\displaystyle \frac{1}{2}(x\sqrt{1+x^2}+log|x+\sqrt{1+x^2}|)$
(2)次の等式を示せ。
$\displaystyle \int_0^{\frac{π}{2}}\frac{cos^3x}{\sqrt{1+sin^2x}}dx=\frac{1}{2}\{3log(1+\sqrt{2})-\sqrt{2}\}$
この動画を見る
【奈良教育大学 2023】
以下の問いに答えよ。
(1) 次の関数の導関数を求めよ。ただし、対数は自然対数とする。
(i) $log|x+\sqrt{1+x^2}|$
(ii) $\displaystyle \frac{1}{2}(x\sqrt{1+x^2}+log|x+\sqrt{1+x^2}|)$
(2)次の等式を示せ。
$\displaystyle \int_0^{\frac{π}{2}}\frac{cos^3x}{\sqrt{1+sin^2x}}dx=\frac{1}{2}\{3log(1+\sqrt{2})-\sqrt{2}\}$
【高校数学】毎日積分77日目~47都道府県制覇への道~【⑳和歌山】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
この動画を見る
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
【高校数学】19回目にして遂に計算ミス発生!?毎日積分76日目~47都道府県制覇への道~【⑲大阪】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
この動画を見る
【大阪大学 2023】
$n$を$2$以上の自然数とする。
(1) $0≦x≦1$の時、次の不等式が成り立つことを示せ。
$\displaystyle \frac{1}{2}x^n≦(-1)^n\{\frac{1}{x+1}-1-\sum_{k=2}^n(-1)^{k-1}\}≦x^n-\frac{1}{2}x^{n+1}$
(2) $\displaystyle a_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$とするとき、次の極限値を求めよ。
$\displaystyle \lim_{n\to \infty} (-1)^nn(a_n-log2)$
【高校数学】毎日積分75日目~47都道府県制覇への道~【⑱兵庫】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
この動画を見る
【神戸大学 2023】
媒介変数表示
$\displaystyle x=sint, y=cos(t-\frac{π}{6})sint (0≦t≦π)$
で表される曲線を$C$とする。以下の問に答えよ。
(1) $\displaystyle \frac{dx}{dt}=0$ または $\displaystyle \frac{dy}{dt}=0$となる$t$の値を求めよ。
(2) $C$の概形を$xy$平面上に描け。
(3) $C$の$y≦0$の部分と$x$軸で囲まれた図形の面積を求めよ。
【高校数学】毎日積分74日目~47都道府県制覇への道~【九州~四国・中国地方総集編】【毎日17時投稿】
【高校数学】毎日積分73日目~47都道府県制覇への道~【⑰岡山】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
この動画を見る
【岡山大学 2023】
$a<0,b>0$とする。2つの曲線$\displaystyle C:y=\frac{1}{x^2+1}$と$D:y=ax^2+b$がある。いま、$x>0$で$C$と$D$が共有点をもち、その点における2つの曲線の接線が一致しているとする。その共有点の$x$座標を$t$とし、$D$と$x$軸で囲まれた部分の面積を$S$とする。以下の問いに答えよ。
(1) $D$と$x$軸の交点の$x$座標を$±p$とし、$p>0$とする。$S$を$a$と$p$を用いて表せ。
(2) $a,b$を$t$を用いて表せ。
(3) $S$を$t$を用いて表せ。
(4) $t>0$の範囲で$S$が最大となるような$D$の方程式を求めよ。
【高校数学】毎日積分72日目~47都道府県制覇への道~【⑯鳥取】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【鳥取大学 2023】
負でない整数$n=0,1,2,・・・$と正の実数$x>0$に対し、
$\displaystyle I_n=\frac{1}{n!}\int_0^xt^ne^{-t}dt$
とおく。以下の問いに答えよ。
(1) $I_0,I_1$を求めよ。
(2) $n=1,2,3,・・・$に対し、$I_n$と$I_{n-1}$の関係式を求めよ。
(3) $I_n(n=0,1,2,・・・)$を求めよ。
この動画を見る
【鳥取大学 2023】
負でない整数$n=0,1,2,・・・$と正の実数$x>0$に対し、
$\displaystyle I_n=\frac{1}{n!}\int_0^xt^ne^{-t}dt$
とおく。以下の問いに答えよ。
(1) $I_0,I_1$を求めよ。
(2) $n=1,2,3,・・・$に対し、$I_n$と$I_{n-1}$の関係式を求めよ。
(3) $I_n(n=0,1,2,・・・)$を求めよ。
【高校数学】毎日積分71日目~47都道府県制覇への道~【⑮広島】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
この動画を見る
【広島大学 2023】
関数$\displaystyle f(x)=log\frac{3x+3}{x^2+3}$について、次の問いに答えよ。
(1) $y=f(x)$のグラフの概形をかけ。ただし、グラフの凹凸は調べなくてよい。
(2) $s$を定数とするとき、次の$x$についての方程式(*)の異なる実数解の個数を調べよ。
(*) $f(x)=s$
(3) 定積分$\displaystyle\int_0^3\frac{2x^2}{x^2+3}dx$の値を求めよ。
(4) (2)の(*)が実数解をもつ$s$に対して、(2)の(*)の実数解のうち最大のものから最小のものを引いた差を$g(s)$とする。ただし、(2)の(*)の実数解が一つだけであるときには$g(s)=0$とする。関数$f(x)$の最大値を$α$とおくとき、定積分$\displaystyle\int_0^αg(s)ds$の値を求めよ。
【高校数学】毎日積分70日目~47都道府県制覇への道~【⑭島根】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1) $\displaystyle \frac{n+5}{n+2}≦2$を示せ。
(2) $\displaystyle \int_0^1xf(x)dx≦\frac{2}{3}(\int_0^1f(x)dx)^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
この動画を見る
【島根大学 2023】
$a$を実数の定数、$n$を自然数とし、関数$f(x)$を$f(x)=1-ax^n$と定める。次の問いに答えよ。
(1) $\displaystyle \frac{n+5}{n+2}≦2$を示せ。
(2) $\displaystyle \int_0^1xf(x)dx≦\frac{2}{3}(\int_0^1f(x)dx)^2$を示せ。
(3) (2)の不等式において、等号が成立するときの$a$と$n$の値を求めよ。
【高校数学】毎日積分69日目~47都道府県制覇への道~【⑬山口】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
【山口大学 2023】
座標平面上で、不等式
$\displaystyle \frac{1}{4}x^2-2≦y≦0またはx^2+y^2≦4$
の表す領域を$D_1$とし、不等式
$y>\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_2$とし、不等式
$y>-\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_3$とする。また、$D_2$と$D_3$の和集合を$X$とし、$D_1$から$X$を除いた領域を$Y$とする。このとき、次の問いに答えなさい。
(1)領域$D_1$を図示しなさい。
(2)領域$D_1$の面積を求めさない。
(3)領域$Y$を図示しなさい。
(4)領域$Y$の面積を求めなさい。
この動画を見る
【山口大学 2023】
座標平面上で、不等式
$\displaystyle \frac{1}{4}x^2-2≦y≦0またはx^2+y^2≦4$
の表す領域を$D_1$とし、不等式
$y>\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_2$とし、不等式
$y>-\sqrt{3}xかつx^2+y^2<2$
の表す領域を$D_3$とする。また、$D_2$と$D_3$の和集合を$X$とし、$D_1$から$X$を除いた領域を$Y$とする。このとき、次の問いに答えなさい。
(1)領域$D_1$を図示しなさい。
(2)領域$D_1$の面積を求めさない。
(3)領域$Y$を図示しなさい。
(4)領域$Y$の面積を求めなさい。
福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理
単元:
#大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
【高校数学】毎日積分68日目~47都道府県制覇への道~【⑫香川】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$-1<x<1$を定義域とする関数$\displaystyle f(x)=\frac{1}{1-x^2}$について、次の問に答えよ。
(1)原点から曲線$C:y=f(x)$に引いた2本の接線それぞれの方程式を求めよ。
(2)$C$と(1)の2本の接線で囲まれてできる図形$D$の面積を求めよ。
(3)$D$を$y$軸のまわりに1回転させてできる立体の体積を求めよ。
【香川大学 2023】
この動画を見る
$-1<x<1$を定義域とする関数$\displaystyle f(x)=\frac{1}{1-x^2}$について、次の問に答えよ。
(1)原点から曲線$C:y=f(x)$に引いた2本の接線それぞれの方程式を求めよ。
(2)$C$と(1)の2本の接線で囲まれてできる図形$D$の面積を求めよ。
(3)$D$を$y$軸のまわりに1回転させてできる立体の体積を求めよ。
【香川大学 2023】
【高校数学】毎日積分67日目~47都道府県制覇への道~【⑪徳島】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
この動画を見る
$\displaystyle f(x)=\frac{2x^2-x-1}{x^2+2x+2}$とする。
(1)$\displaystyle\lim_{x\to -\infty} f(x)$および$\displaystyle \lim_{x\to \infty} f(x)$を求めよ。
(2)導関数$f'(x)$を求めよ。
(3)関数$y=f(x)$の最大値と最小値を求めよ。
(4)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ。
【徳島大学 2023】
【高校数学】毎日積分66日目~47都道府県制覇への道~【⑩愛媛】【毎日17時投稿】
単元:
#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\int_{-\frac{π}{3}}^{\frac{π}{3}}(x+tanx)dx=[オ]$であり、$\int_{-\frac{π}{3}}^{\frac{π}{3}}|x+tanx|dx=[カ]$である。
関数$f(x)=x,g(x)=2xsinx$について、$f'(0)=1$であり、$g'(0)=[キ]$である。また、$0≦x≦\frac{π}{6}$において、直線$y=f(x)$と曲線$y=g(x)$とで囲まれた図形の面積は[ク]である。
【愛媛大学 2023】
この動画を見る
$\int_{-\frac{π}{3}}^{\frac{π}{3}}(x+tanx)dx=[オ]$であり、$\int_{-\frac{π}{3}}^{\frac{π}{3}}|x+tanx|dx=[カ]$である。
関数$f(x)=x,g(x)=2xsinx$について、$f'(0)=1$であり、$g'(0)=[キ]$である。また、$0≦x≦\frac{π}{6}$において、直線$y=f(x)$と曲線$y=g(x)$とで囲まれた図形の面積は[ク]である。
【愛媛大学 2023】
【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知(高知大学)】【毎日17時投稿】
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
この動画を見る
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
【高校数学】毎日積分64日目~47都道府県制覇への道~【⑧福岡】【毎日17時投稿】
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
$xy$平面上の曲線$C$を、媒介変数tを用いて次のように定める。
$x=t+2\sin^{2t}, y=t+\sin t (0\lt t\lt \pi)$
以下の問いに答えよ。
(1)曲線$C$に接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線$C$のうち$y≦x$の領域にある部分と直線$y=x$で囲まれた図形の面積を求めよ。
【九州大学 2023】
この動画を見る
$xy$平面上の曲線$C$を、媒介変数tを用いて次のように定める。
$x=t+2\sin^{2t}, y=t+\sin t (0\lt t\lt \pi)$
以下の問いに答えよ。
(1)曲線$C$に接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線$C$のうち$y≦x$の領域にある部分と直線$y=x$で囲まれた図形の面積を求めよ。
【九州大学 2023】