平面上の曲線

これなにしてる?

福田のおもしろ数学152〜2つの図形の面積を同時に2等分する直線が存在する証明

福田の数学〜北海道大学2024年理系第1問〜点の一致条件と軌跡

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
を実数とし、 平面上の点P( , )および点Q( , )を考える。
(1)点Pと点Qが一致するような の値をすべて求めよ。
(2) が0< < の範囲で変化するとき、点Pの軌跡を 平面上に図示せよ。
ただし、 軸、 軸との共有点がある場合は、それらの座標を求め、図中に記せ。
この動画を見る
(1)点Pと点Qが一致するような
(2)
ただし、
放物線と直線 2024早大本庄 オンラインで教えている生徒が早稲田本庄に合格しました!

単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
数学を数楽に
問題文全文(内容文):
点(1,9)を通り、y軸と平行でなく放物線 とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
この動画を見る
点(1,9)を通り、y軸と平行でなく放物線
2024早稲田大学 本庄高等学院
高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

単元:
#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師:
理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線
の焦点の座標を求めなさい。
次の極限値を求めなさい。
この動画を見る
xy平面上の双曲線
の焦点の座標を求めなさい。
次の極限値を求めなさい。
数学どうにかしたい人へ

単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
ここに補助線!! 関数だけど図形で解く!!東京学芸大学附属

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
媒介変数表示
= , = (0≦ ≦ )
で表される曲線をCとする。以下の問いに答えよ。
(1) =0 または =0 となる の値を求めよ。
(2)Cの概形を 平面上に描け。
(3)Cの ≦0 の部分と 軸で囲まれた図形の面積を求めよ。
2023神戸大学理系過去問
この動画を見る
で表される曲線をCとする。以下の問いに答えよ。
(1)
(2)Cの概形を
(3)Cの
2023神戸大学理系過去問
福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積

単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数 を用いて次のように定める。
= +2 , = + (0< < )
以下の問いに答えよ。
(1)曲線Cに接する直線のうち 軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち ≦ の領域にある部分と直線 = で囲まれた図形の面積を求めよ。
2023九州大学理系過去問
この動画を見る
以下の問いに答えよ。
(1)曲線Cに接する直線のうち
(2)曲線Cのうち
2023九州大学理系過去問
【数Ⅲ】式と曲線:tractrixに関する問題

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
この動画を見る
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
大学入試問題#522「これ初見はきつそう」 信州大学2001 #面積

単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#信州大学#数C
指導講師:
ますただ
問題文全文(内容文):
曲線
で囲まれた面積を求めよ
出典:2001年信州大学後期 入試問題
この動画を見る
曲線
出典:2001年信州大学後期 入試問題
一瞬で2点を通る直線を求める流れが分かる動画~全国入試問題解法 #数学 #高校受験 #shorts

単元:
#数学(中学生)#平面上の曲線#高校入試過去問(数学)#数C
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点A,Cを通る直線の式を求めなさい.
宮城県高校過去問
この動画を見る
2点A,Cを通る直線の式を求めなさい.
宮城県高校過去問
2023高校入試数学解説56問目 傾きと切片 群馬県前期

単元:
#数学(中学生)#平面上の曲線#高校入試過去問(数学)#数C
指導講師:
数学を数楽に
問題文全文(内容文):
正しいのは?
y=ax+b
*図は動画内参照
ア ,
イ ,
ウ ,
エ ,
この動画を見る
正しいのは?
y=ax+b
*図は動画内参照
ア
イ
ウ
エ
2023高校入試数学解説54問目 グラフ 明治学院

単元:
#数学(中学生)#平面上の曲線#2次曲線#高校入試過去問(数学)#数C
指導講師:
数学を数楽に
問題文全文(内容文):
のグラフと点P(2,1)を表した図
a>2となるグラフはどれ?
*図は動画内参照
2023明治学院高等学校
この動画を見る
a>2となるグラフはどれ?
*図は動画内参照
2023明治学院高等学校
福田の1.5倍速演習〜合格する重要問題101〜慶應義塾大学2020年度環境情報学部第1問(1)〜不定方程式の解

単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#平面上の曲線#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#加法定理とその応用#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
(1)正の実数xとyが9 +16 =144 を満たしているとき、xyの最大値は である。
2020慶應義塾大学環境情報学部過去問
この動画を見る
2020慶應義塾大学環境情報学部過去問
【数Ⅲ】式と曲線:極方程式の直線のなす角

単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#サクシード#サクシード数学Ⅲ#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2直線
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
この動画を見る
2直線
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
福田の1.5倍速演習〜合格する重要問題026〜神戸大学2016年度理系数学第5問〜極方程式と媒介変数表示

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
極方程式で表されたxy平面上の曲線 をCとする。
(1)曲線C上の点を直交座標(x,y)で表したとき、 となる点、および
となる点の直交座標を求めよ。
(2) を求めよ。
(3)曲線Cの概形をxy平面上にかけ。
(4)曲線Cの長さを求めよ。
2016神戸大学理系過去問
この動画を見る
極方程式で表されたxy平面上の曲線
(1)曲線C上の点を直交座標(x,y)で表したとき、
(2)
(3)曲線Cの概形をxy平面上にかけ。
(4)曲線Cの長さを求めよ。
2016神戸大学理系過去問
福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
ただし、 である。
(1) および を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。
2016東京工業大学理系過去問
この動画を見る
次のように媒介変数表示されたxy平面上の曲線をCとする。
ただし、
(1)
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。
2016東京工業大学理系過去問
福田の1.5倍速演習〜合格する重要問題004〜東北大学2015年理系数学第1問

単元:
#大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東北大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
xy平面において、次の式が表す曲線をCとする。
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。
2015東北大学理系過去問
この動画を見る
xy平面において、次の式が表す曲線をCとする。
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。
2015東北大学理系過去問
対称移動

福田の数学〜上智大学2022年理工学部第4問〜線分の中点の軌跡と直線の通過範囲

単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
座標平面上に円C と点 がある。円C上を点 が
動くとき、線分APの中点をMとし、線分APの垂直二等分線をlとする。
(1)点Mの軌跡の方程式を求め、その軌跡を図示せよ。
(2)直線lの方程式をa,\ bを用いて表せ。
(3)直線lが通過する領域を表す不等式を求め、その領域を図示せよ。
2022上智大理工学部過去問
この動画を見る
座標平面上に円C
動くとき、線分APの中点をMとし、線分APの垂直二等分線をlとする。
(1)点Mの軌跡の方程式を求め、その軌跡を図示せよ。
(2)直線lの方程式をa,\ bを用いて表せ。
(3)直線lが通過する領域を表す不等式を求め、その領域を図示せよ。
2022上智大理工学部過去問
福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標 が、時刻 の関数として、
で与えられるとする。時刻 にPが出発してから初めてy軸上に到着するまで
にPが描く軌跡をCとする。
(1) において、Pが初めてy軸上に到着するときのtの値を求めよ。
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。
2022上智大学理系過去問
この動画を見る
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標
で与えられるとする。時刻
にPが描く軌跡をCとする。
(1)
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。
2022上智大学理系過去問
福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
を正の実数とする。座標平面において、原点Oからの距離が
直線 からの距離の 倍であるような点 の軌跡を考える。点 の座標を とする
と、 は次の方程式を満たす。
の解答群
次に、座標平面の原点 を極、 軸の正の部分を始線とする極座標を考える。
点 の極座標を とする。 を満たすとき、
点 の直交座標 を を用いて表すと
の解答群
(1)から、 のとき、点 の軌跡は放物線 となる。
この放物線とy軸で囲まれた図形の面積 は
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。
の解答群
2022明治大学全統理系過去問
この動画を見る
直線
と、
次に、座標平面の原点
点
点
(1)から、
この放物線とy軸で囲まれた図形の面積
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。
2022明治大学全統理系過去問
福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
直線 に接する楕円 がある。
このとき、 である。
この楕円を直線 のまわりに1回転してできる立体の体積は、
のとき、
最大値 をとる。
2022早稲田大学人間科学部過去問
この動画を見る
このとき、
この楕円を直線
最大値
2022早稲田大学人間科学部過去問
福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角 だけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'を
の式で表すと となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径 で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
点B を中心として、円Kを に角 だけ回転させる。
原点Oを中心として、円Kを に角 だけ回転させる。
の選択肢
時計回り,反時計回り,
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、 )をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線を とする。 上の
点の座標を(x,y)として、 の方程式をx,yを用いて書くと となる。
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを 回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線を とする。原点Oを極とし、x軸の正の部分を
始線とする極座標# による の極方程式は である。
ただし はそれぞれ 上の点の原点からの距離、および偏角である。
2022慶應義塾大学医学部過去問
この動画を見る
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'を
の式で表すと
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
時計回り,反時計回り,
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、
やり方でCに沿って転がすとき、点Qが動いてできる曲線を
点の座標を(x,y)として、
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを
(0,a)に戻る。Rが描く曲線を
始線とする極座標#
ただし
2022慶應義塾大学医学部過去問
福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積

単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
媒介変数 に対して、 で表される曲線C上に
点 と がある。原点から点 までの曲線の長さは であり、点 における曲線C
の接線の傾きは である。以下の問いに答えよ。
(1)点 の座標 を求めよ。
(2)点 の座標 を求めよ。
(3)曲線Cとy軸、および2直線 で囲まれた図形を、y軸の周りに1回転
してできる回転体を考える。この回転体の体積を求めよ。
2022浜松医科大学医学部過去問
この動画を見る
媒介変数
点
の接線の傾きは
(1)点
(2)点
(3)曲線Cとy軸、および2直線
してできる回転体を考える。この回転体の体積を求めよ。
2022浜松医科大学医学部過去問
福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

単元:
#大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
以下の問いに答えよ。
(1)区間 において、 であることを示せ。
(2)曲線Cの の部分、x軸、直線 で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。
2022九州大学理系過去問
この動画を見る
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
以下の問いに答えよ。
(1)区間
(2)曲線Cの
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに
にあることを示せ。
(4)曲線Cの概形を図示せよ。
2022九州大学理系過去問
福田の数学〜九州大学2022年理系第5問〜媒介変数表示のグラフの対称性とグラフの追跡

単元:
#大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
平面上の曲線Cを、媒介変数tを用いて次のように定める。
以下の問いに答えよ。
(1)区間 において、 であることを示せ。
(2)曲線Cの の部分、x軸、直線 で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。
2022九州大学理系過去問
この動画を見る
以下の問いに答えよ。
(1)区間
(2)曲線Cの
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに
にあることを示せ。
(4)曲線Cの概形を図示せよ。
2022九州大学理系過去問
福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線 と直線 が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。
2022神戸大学理系過去問
この動画を見る
aを正の実数とし、双曲線
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。
2022神戸大学理系過去問
福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積

単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#大阪大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
座標平面において、tを媒介変数として
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。
2022大阪大学理系過去問
この動画を見る
座標平面において、tを媒介変数として
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。
2022大阪大学理系過去問