平面上の曲線 - 質問解決D.B.(データベース)

平面上の曲線

これなにしてる?

アイキャッチ画像
単元: #平面上の曲線#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
楕円のお話
この動画を見る 

福田のおもしろ数学152〜2つの図形の面積を同時に2等分する直線が存在する証明

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数C
指導講師: 福田次郎
問題文全文(内容文):
次の2つの図形(※動画参照)の面積を同時に2等分する直線が存在することを証明せよ。
この動画を見る 

福田の数学〜北海道大学2024年理系第1問〜点の一致条件と軌跡

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 tを実数とし、xy平面上の点P(cos2t, cost)および点Q(sint, sin2t)を考える。
(1)点Pと点Qが一致するようなtの値をすべて求めよ。
(2)tが0<t2π の範囲で変化するとき、点Pの軌跡をxy平面上に図示せよ。
ただし、x軸、y軸との共有点がある場合は、それらの座標を求め、図中に記せ。
この動画を見る 

放物線と直線  2024早大本庄  オンラインで教えている生徒が早稲田本庄に合格しました!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
点(1,9)を通り、y軸と平行でなく放物線y=x2とのすべての交点のx座標とy座標がともに整数となる直線は何本あるか?
2024早稲田大学 本庄高等学院
この動画を見る 

高校数学:数学検定準1級1次:問題6,7 双曲線の焦点、関数の極限

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#関数と極限#2次曲線#関数の極限#数学検定#数学検定準1級#数学(高校生)#数C#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xy平面上の双曲線

x236y264=1

の焦点の座標を求めなさい。


次の極限値を求めなさい。

limx1x2+2x3x31
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

ここに補助線!! 関数だけど図形で解く!!東京学芸大学附属

アイキャッチ画像
単元: #数Ⅰ#平面上の曲線#図形と計量#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
Aの座標は?
*図は動画内参照

東京学芸大学附属高校
この動画を見る 

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 媒介変数表示
x=sint, y=cos(tπ6)sint (0≦tπ)
で表される曲線をCとする。以下の問いに答えよ。
(1)dxdt=0 または dydt=0 となるtの値を求めよ。
(2)Cの概形をxy平面上に描け。
(3)Cのy≦0 の部分とx軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
この動画を見る 

福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
5 xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
x=t+2sin2t, y=t+sint (0<tπ)
以下の問いに答えよ。
(1)曲線Cに接する直線のうちy軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうちyxの領域にある部分と直線y=xで囲まれた図形の面積を求めよ。

2023九州大学理系過去問
この動画を見る 

【数Ⅲ】式と曲線:tractrixに関する問題

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
tractrixと呼ばれる媒介変数で表される曲線が持つ性質に関する証明です。あまり有名ではないものの、高校数学で十分証明が可能なものになります。入試にも出題される可能性が高いかと思われますので、ぜひご覧ください。
この動画を見る 

大学入試問題#522「これ初見はきつそう」 信州大学2001 #面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#信州大学#数C
指導講師: ますただ
問題文全文(内容文):
0θ2π

曲線
x=cos3θ, y=sin3θで囲まれた面積を求めよ

出典:2001年信州大学後期 入試問題
この動画を見る 

一瞬で2点を通る直線を求める流れが分かる動画~全国入試問題解法 #数学 #高校受験 #shorts

アイキャッチ画像
単元: #数学(中学生)#平面上の曲線#高校入試過去問(数学)#数C
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2点A,Cを通る直線の式を求めなさい.

宮城県高校過去問
この動画を見る 

2023高校入試数学解説56問目 傾きと切片 群馬県前期

アイキャッチ画像
単元: #数学(中学生)#平面上の曲線#高校入試過去問(数学)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
正しいのは?
y=ax+b
*図は動画内参照
a+b0 , ab0
a+b0 , ab0
a+b0 , ab0
a+b0 , ab0

この動画を見る 

2023高校入試数学解説54問目 グラフ 明治学院

アイキャッチ画像
単元: #数学(中学生)#平面上の曲線#2次曲線#高校入試過去問(数学)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
y=axのグラフと点P(2,1)を表した図
a>2となるグラフはどれ?
*図は動画内参照

2023明治学院高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題101〜慶應義塾大学2020年度環境情報学部第1問(1)〜不定方程式の解

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#平面上の曲線#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#加法定理とその応用#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)正の実数xとyが9x2+16y2=144 を満たしているとき、xyの最大値は    である。

2020慶應義塾大学環境情報学部過去問
この動画を見る 

【数Ⅲ】式と曲線:極方程式の直線のなす角

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
2直線
r(3cosθ+sinθ)=4
r(3cosθsinθ)=2
の交点の極座標を求めよ。またこの2直線のなす鋭角も求めよ。
(出典 数研出版サクシード数学Ⅲ)
この動画を見る 

福田の1.5倍速演習〜合格する重要問題026〜神戸大学2016年度理系数学第5問〜極方程式と媒介変数表示

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上の曲線#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
極方程式で表されたxy平面上の曲線r=1+cosθ(0θ2π)をCとする。
(1)曲線C上の点を直交座標(x,y)で表したとき、dxdθ=0となる点、および
dydθ=0となる点の直交座標を求めよ。
(2)limθπdydxを求めよ。
(3)曲線Cの概形をxy平面上にかけ。
(4)曲線Cの長さを求めよ。

2016神戸大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
{x=3costcos3ty=3sintsin3t
ただし、0tπ2である。
(1)dxdtおよびdydtを計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題004〜東北大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xy平面において、次の式が表す曲線をCとする。
x2+4y2=1,x>0,y>0
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。

2015東北大学理系過去問
この動画を見る 

対称移動

アイキャッチ画像
単元: #平面上の曲線#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
y=-xに関して点Aと対称な点の座標は?
*図は動画内参照
この動画を見る 

福田の数学〜上智大学2022年理工学部第4問〜線分の中点の軌跡と直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に円C:x2+y2=4と点P(6, 0)がある。円C上を点A(2a, 2b)
動くとき、線分APの中点をMとし、線分APの垂直二等分線をlとする。
(1)点Mの軌跡の方程式を求め、その軌跡を図示せよ。
(2)直線lの方程式をa,\ bを用いて表せ。
(3)直線lが通過する領域を表す不等式を求め、その領域を図示せよ。

2022上智大理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第4問〜媒介変数で表された極方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点を極とし、x軸の正の部分を始線とする極座標を考え
る。平面上を運動する点Pの極座標(r, θ)が、時刻t0の関数として、
r=1+t,   θ=log(1+t)
で与えられるとする。時刻t=0にPが出発してから初めてy軸上に到着するまで
にPが描く軌跡をCとする。
(1) t>0において、Pが初めてy軸上に到着するときのtの値を求めよ。
(2)C上の点のx座標の最大値を求めよ。
(3)Cの長さを求めよ。
(4)Cを座標平面上に図示せよ。
(5)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2022上智大学理系過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
a, hを正の実数とする。座標平面において、原点Oからの距離が
直線x=hからの距離のa倍であるような点Pの軌跡を考える。点Pの座標を(x, y)とする
と、x, yは次の方程式を満たす。
(1) x2+2  x+y2=...(1)

, , の解答群
a2h2a3a2hah2
h3b4a2h2ah3h4

次に、座標平面の原点Oを極、x軸の正の部分を始線とする極座標を考える。
Pの極座標を(r θ)とする。rhを満たすとき、
Pの直交座標(x, y)a, h, θを用いて表すと

(x, y)=( cosθ,  sinθ)...(2)
, の解答群
hahh2ah21+acosθ
1+asinθacosθ1asinθ11acosθ1asinθ

(1)から、a=のとき、点Pの軌跡は放物線x= y2+となる。
この放物線とy軸で囲まれた図形の面積S
S=20xdy=20( y2+)dy=
 h2
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。
0π2cosθ(1+cosθ)2dθ=

, , の解答群
h2hh2h21h
1h12h12hh2h2

2022明治大学全統理系過去問
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
6直線x+y=1に接する楕円x2a2+y2b2=1(a>0, b>0)がある。
このとき、b2=     a2+    である。
この楕円を直線y=bのまわりに1回転してできる立体の体積は、
a=        のとき、
最大値            π2をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角αだけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,α
の式で表すとx=    , y=    となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径a2で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて(acosβ,asinβ)(0β2π)となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
(i)点B(a2,0)を中心として、円Kを    に角    だけ回転させる。
(ii)原点Oを中心として、円Kを    に角    だけ回転させる。

    ,    ,    ,    の選択肢
時計回り,反時計回り,β,2β,12β

(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、0<b<a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS1とする。S1上の
点の座標を(x,y)として、S1の方程式をx,yを用いて書くと    となる。

(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを    回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線をS2とする。原点Oを極とし、x軸の正の部分を
始線とする極座標#(r,θ)によるS2の極方程式はr=    である。
ただしr,θはそれぞれS2上の点の原点からの距離、および偏角である。

2022慶應義塾大学医学部過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
媒介変数t (t0)に対して、x=43t32,y=2tで表される曲線C上に
P1P2がある。原点から点P1までの曲線の長さは289であり、点P2における曲線C
の接線の傾きは13である。以下の問いに答えよ。
(1)点P1の座標(x1,y1)を求めよ。
(2)点P2の座標(x2,y2)を求めよ。
(3)曲線Cとy軸、および2直線y=y1,y=y2で囲まれた図形を、y軸の周りに1回転
してできる回転体を考える。この回転体の体積を求めよ。

2022浜松医科大学医学部過去問
この動画を見る 

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
x=5cost+cos5t, y=5sintsin5t (πt<π)
以下の問いに答えよ。
(1)区間0<t<π6において、dxdt<0, dydx<0であることを示せ。
(2)曲線Cの0tπ6の部分、x軸、直線y=13xで囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りにπ3だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜九州大学2022年理系第5問〜媒介変数表示のグラフの対称性とグラフの追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。x=5cost+cos5t, y=5sintsin5t (πt<π)
以下の問いに答えよ。
(1)区間0<t<π6において、dxdt<0, dydx<0であることを示せ。
(2)曲線Cの0tπ6の部分、x軸、直線y=13xで囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りにπ3だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線x24y24=1と直線y=ax+aが異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜大阪大学2022年理系第5問〜媒介変数表示のグラフで囲まれた面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#大阪大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、tを媒介変数として
x=etcost+eπ, y=etsint (0tπ)
と表される曲線をCとする。曲線Cとx軸で囲まれた部分の面積を求めよ。

2022大阪大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image