数C
福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式
単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。\\
また、x座標が正の点Cを、\overrightarrow{ OC }を\overrightarrow{ OA }と\overrightarrow{ OB }に垂直で、|\overrightarrow{ OC }|=8\sqrt3となるように定める。\\
(1)\triangle OABの面積は\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}\ である。\\
(2)点Cの座標は(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })である。\\
(3)四面体OABCの体積は\boxed{\ \ キク\ \ }\ である。\\
(4)平面ABCの方程式は\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0である。\\
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は\\
(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})\\
である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。\\
また、x座標が正の点Cを、\overrightarrow{ OC }を\overrightarrow{ OA }と\overrightarrow{ OB }に垂直で、|\overrightarrow{ OC }|=8\sqrt3となるように定める。\\
(1)\triangle OABの面積は\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}\ である。\\
(2)点Cの座標は(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })である。\\
(3)四面体OABCの体積は\boxed{\ \ キク\ \ }\ である。\\
(4)平面ABCの方程式は\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0である。\\
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は\\
(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})\\
である。
\end{eqnarray}
2022慶應義塾大学商学部過去問
【数C】ベクトルの基本⑦内積を求めたいときの絶対値の2乗
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a=√3,b=5,a-b=√5のとき、内積a・bを求めよ
この動画を見る
a=√3,b=5,a-b=√5のとき、内積a・bを求めよ
【数B】ベクトル:ベクトルの基本⑦内積を求めたいときの絶対値の2乗
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
この動画を見る
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
福田の数学〜慶應義塾大学2022年経済学部第4問〜空間ベクトルと四面体の体積
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ tを実数とする。また、Oを原点とする座標空間内に\\
3点A(4,2,5),\ B(-1,1,1),\ C(2-t,4-3t,6+2t)をとる。\\
(1)\triangle OABの面積を求めよ。\\
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。\\
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。\\
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を\\
すべて求めよ。
\end{eqnarray}
2022慶應義塾大学経済学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{4}}\ tを実数とする。また、Oを原点とする座標空間内に\\
3点A(4,2,5),\ B(-1,1,1),\ C(2-t,4-3t,6+2t)をとる。\\
(1)\triangle OABの面積を求めよ。\\
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。\\
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。\\
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を\\
すべて求めよ。
\end{eqnarray}
2022慶應義塾大学経済学部過去問
【数C】ベクトルの基本⑥内積の基本計算2 成分を用いて計算する
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る
内積の基本計算(直角三角形ABCにおける内積計算)
【数B】ベクトル:ベクトルの基本⑥内積の基本計算2 成分を用いて計算する
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
この動画を見る
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式
単元:
#数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ (1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角\alphaだけ\\
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,\alpha\\
の式で表すとx'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }となる。\\
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径\frac{a}{2}で原点O\\
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って\\
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。\\
そして、接点の座標がはじめて(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)となるようにする。\\
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。\\
(\textrm{i})点B(\frac{a}{2},0)を中心として、円Kを\boxed{\ \ ウ\ \ }\ に角\boxed{\ \ エ\ \ }\ だけ回転させる。\\
(\textrm{ii})原点Oを中心として、円Kを\boxed{\ \ オ\ \ }\ に角\boxed{\ \ カ\ \ }\ だけ回転させる。\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }の選択肢\\
時計回り,反時計回り,\beta,2\beta,\frac{1}{2}\beta\\
\\
\\
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)\\
(ただし、0 \lt b \lt a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた\\
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS_1とする。S_1上の\\
点の座標を(x,y)として、S_1の方程式をx,yを用いて書くと\boxed{\ \ キ\ \ }となる。\\
\\
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。\\
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。\\
2つの円の接点が円Kを\boxed{\ \ ク\ \ }回転したとき、点Rははじめてもとの位置\\
(0,a)に戻る。Rが描く曲線をS_2とする。原点Oを極とし、x軸の正の部分を\\
始線とする極座標(r,\theta)によるS_2の極方程式はr=\boxed{\ \ ケ\ \ }である。\\
ただしr,\thetaはそれぞれS_2上の点の原点からの距離、および偏角である。
\end{eqnarray}
2022慶應義塾大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ (1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角\alphaだけ\\
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,\alpha\\
の式で表すとx'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }となる。\\
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径\frac{a}{2}で原点O\\
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って\\
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。\\
そして、接点の座標がはじめて(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)となるようにする。\\
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。\\
(\textrm{i})点B(\frac{a}{2},0)を中心として、円Kを\boxed{\ \ ウ\ \ }\ に角\boxed{\ \ エ\ \ }\ だけ回転させる。\\
(\textrm{ii})原点Oを中心として、円Kを\boxed{\ \ オ\ \ }\ に角\boxed{\ \ カ\ \ }\ だけ回転させる。\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }の選択肢\\
時計回り,反時計回り,\beta,2\beta,\frac{1}{2}\beta\\
\\
\\
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)\\
(ただし、0 \lt b \lt a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた\\
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS_1とする。S_1上の\\
点の座標を(x,y)として、S_1の方程式をx,yを用いて書くと\boxed{\ \ キ\ \ }となる。\\
\\
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。\\
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。\\
2つの円の接点が円Kを\boxed{\ \ ク\ \ }回転したとき、点Rははじめてもとの位置\\
(0,a)に戻る。Rが描く曲線をS_2とする。原点Oを極とし、x軸の正の部分を\\
始線とする極座標(r,\theta)によるS_2の極方程式はr=\boxed{\ \ ケ\ \ }である。\\
ただしr,\thetaはそれぞれS_2上の点の原点からの距離、および偏角である。
\end{eqnarray}
2022慶應義塾大学医学部過去問
【数C】ベクトルの基本⑤内積の基本計算1 始点を揃えて考える
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る
内積の基本計算(直角三角形ABCにおける内積計算)
【数B】ベクトル:ベクトルの基本⑤内積の基本計算1 始点を揃えて考える
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
この動画を見る
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式
単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)\overrightarrow{ a }=(\sqrt3,0,1)とする。空間ベクトル\overrightarrow{ b }, \overrightarrow{ c }はともに大きさが1であり、\\
\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a } とする。\\
(\textrm{i})p,q,rを実数とし、\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c } とするとき、\\
内積\overrightarrow{ x }・\overrightarrow{ a }と\overrightarrow{ x }の大きさ|\ \overrightarrow{ x }\ |をp,q,rを用いて表すと、\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }を満たす実数s,\thetaが存在するような\\
実数zは2個あるが、それらを全て求めるとz=\boxed{\ \ ウ\ \ }である。\\
\end{eqnarray}
2022慶應義塾大学理工学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ (1)\overrightarrow{ a }=(\sqrt3,0,1)とする。空間ベクトル\overrightarrow{ b }, \overrightarrow{ c }はともに大きさが1であり、\\
\overrightarrow{ a }∟\overrightarrow{ b }, \overrightarrow{ b }∟\overrightarrow{ c }, \overrightarrow{ c }∟\overrightarrow{ a } とする。\\
(\textrm{i})p,q,rを実数とし、\overrightarrow{ x }=p\overrightarrow{ a }+q\overrightarrow{ b }+r\overrightarrow{ c } とするとき、\\
内積\overrightarrow{ x }・\overrightarrow{ a }と\overrightarrow{ x }の大きさ|\ \overrightarrow{ x }\ |をp,q,rを用いて表すと、\overrightarrow{ x }・\overrightarrow{ a }=\boxed{\ \ ア\ \ },|\ \overrightarrow{ x } \ |=\boxed{\ \ イ\ \ }である。\\
(\textrm{ii})(5,0,z)=s\overrightarrow{ a }+(\cos\theta)\overrightarrow{ b }+(\sin\theta)\overrightarrow{ c }を満たす実数s,\thetaが存在するような\\
実数zは2個あるが、それらを全て求めるとz=\boxed{\ \ ウ\ \ }である。\\
\end{eqnarray}
2022慶應義塾大学理工学部過去問
【数C】ベクトルの基本④内積の基本的な考え方
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材:
#チャート式#青チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
内積の基本的な考え方
直角三角形ABCにおいて内積AB・AC、BA・BC、CA・CB、AB・BCを求めよ。
この動画を見る
内積の基本的な考え方
直角三角形ABCにおいて内積AB・AC、BA・BC、CA・CB、AB・BCを求めよ。
【数B】ベクトル:ベクトルの基本④内積の基本的な考え方
福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積
単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 媒介変数t\ (t \geqq 0)に対して、x=\frac{4}{\sqrt3}t^{\frac{3}{2}},y=2tで表される曲線C上に\\
点P_1とP_2がある。原点から点P_1までの曲線の長さは\frac{28}{9}であり、点P_2における曲線C\\
の接線の傾きは\frac{1}{3}である。以下の問いに答えよ。\\
(1)点P_1の座標(x_1,y_1)を求めよ。\\
(2)点P_2の座標(x_2,y_2)を求めよ。\\
(3)曲線Cとy軸、および2直線y=y_1,y=y_2で囲まれた図形を、y軸の周りに1回転\\
してできる回転体を考える。この回転体の体積を求めよ。
\end{eqnarray}
2022浜松医科大学医学部過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ 媒介変数t\ (t \geqq 0)に対して、x=\frac{4}{\sqrt3}t^{\frac{3}{2}},y=2tで表される曲線C上に\\
点P_1とP_2がある。原点から点P_1までの曲線の長さは\frac{28}{9}であり、点P_2における曲線C\\
の接線の傾きは\frac{1}{3}である。以下の問いに答えよ。\\
(1)点P_1の座標(x_1,y_1)を求めよ。\\
(2)点P_2の座標(x_2,y_2)を求めよ。\\
(3)曲線Cとy軸、および2直線y=y_1,y=y_2で囲まれた図形を、y軸の周りに1回転\\
してできる回転体を考える。この回転体の体積を求めよ。
\end{eqnarray}
2022浜松医科大学医学部過去問
福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値
単元:
#数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ iは虚数単位とする。次の条件(\textrm{I}),(\textrm{II})のどちらも満たす複素数z全体の集合を\\
Sとする。\\
(\textrm{I})zの虚部は正である。\\
(\textrm{II})複素数平面上の点A(1),B(1-iz),C(z^2)は一直線上にある。\\
このとき、以下の問いに答えよ。\\
(1)1でない複素数\alphaについて、\alphaの虚部が正であることは、\frac{1}{\alpha-1}の虚部が\\
負であるための必要十分条件であることを示せ。\\
(2)集合Sを複素数平面上に図示せよ。\\
(3)w=\frac{1}{z-1}とする。zがSを動くとき、|w+\frac{i}{\sqrt2}|の最小値を求めよ。
\end{eqnarray}
2022筑波大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}}\ iは虚数単位とする。次の条件(\textrm{I}),(\textrm{II})のどちらも満たす複素数z全体の集合を\\
Sとする。\\
(\textrm{I})zの虚部は正である。\\
(\textrm{II})複素数平面上の点A(1),B(1-iz),C(z^2)は一直線上にある。\\
このとき、以下の問いに答えよ。\\
(1)1でない複素数\alphaについて、\alphaの虚部が正であることは、\frac{1}{\alpha-1}の虚部が\\
負であるための必要十分条件であることを示せ。\\
(2)集合Sを複素数平面上に図示せよ。\\
(3)w=\frac{1}{z-1}とする。zがSを動くとき、|w+\frac{i}{\sqrt2}|の最小値を求めよ。
\end{eqnarray}
2022筑波大学理系過去問
基本問題
単元:
#複素数平面#複素数平面#数学(高校生)#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ x+\dfrac{1}{x}-\sqrt2$のとき,
x^{2023}+\dfrac{1}{x^{2023}}$の値を求めよ.
この動画を見る
$ x+\dfrac{1}{x}-\sqrt2$のとき,
x^{2023}+\dfrac{1}{x^{2023}}$の値を求めよ.
藤田医科大学 式の最小値
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
【数C】ベクトル平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
|a+tb|はt=□のとき最小値□を取る
この動画を見る
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
|a+tb|はt=□のとき最小値□を取る
【数B】平面ベクトル:ベクトルの基本③ 絶対値の最大最小は2乗で考えよ
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
$\vert a+tb\vert $は$t=□$のとき最小値$□$を取る
この動画を見る
tは実数とする。
aベクトル=(2,1), bベクトル=(3,4)に対して
$\vert a+tb\vert $は$t=□$のとき最小値$□$を取る
福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
2022筑波大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
2022筑波大学理系過去問
数学を数楽にの川端さん三乗
福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ nを自然数とする。整数i,jに対し、xy平面上の点P_{i,j}の座標を\\
(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)\\
で与える。さらに、i,jを動かしたとき、P_{i,j}の取り得る異なる座標の\\
個数をS_nとする。このとき、以下の問いに答えよ。\\
(1)n=3のとき、\triangle P_{0,0}P_{0,1}P_{0,2}および\triangle P_{1,0}P_{1,1}P_{1,2}を同一平面上\\
に図示せよ。\\
(2)S_4を求めよ。\\
(3)平面上の異なる2点A,Bに対して、AQ=BQ=1であるような\\
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。\\
(4)S_nをnを用いて表せ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}}\ nを自然数とする。整数i,jに対し、xy平面上の点P_{i,j}の座標を\\
(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)\\
で与える。さらに、i,jを動かしたとき、P_{i,j}の取り得る異なる座標の\\
個数をS_nとする。このとき、以下の問いに答えよ。\\
(1)n=3のとき、\triangle P_{0,0}P_{0,1}P_{0,2}および\triangle P_{1,0}P_{1,1}P_{1,2}を同一平面上\\
に図示せよ。\\
(2)S_4を求めよ。\\
(3)平面上の異なる2点A,Bに対して、AQ=BQ=1であるような\\
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。\\
(4)S_nをnを用いて表せ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
【数C】ベクトル平面ベクトル:ベクトルの基本② ベクトルの大きさ
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトルの大きさの求め方
a=(3,4)の大きさを求めよ。
この動画を見る
ベクトルの大きさの求め方
a=(3,4)の大きさを求めよ。
【数B】平面ベクトル:ベクトルの基本② ベクトルの大きさ
【球面の方程式って?】球面の方程式の解釈と求め方を解説!〔数学、高校数学〕
福田の数学〜千葉大学2022年理系第6問〜独立に動く空間上の2点の距離の最小
単元:
#大学入試過去問(数学)#空間ベクトル#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。\\
実数tを用いてt\ \overrightarrow{ OA }+\overrightarrow{ OB }と表される点全体をlとする。また、平面xy平面上\\
のy=x^2を満たす点全体からなる曲線をCとする。\\
(1)曲線C上の点P(a,a^2,0)を固定する。l上の点Qを、\overrightarrow{ OA }と\overrightarrow{ PQ }\\
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。\\
(2)曲線C上の点Rとl上の点Sのうち、|\overrightarrow{ RS }|を最小にする点Rと点Sの\\
組み合わせを全て求めよ。また、そのときの|\overrightarrow{ RS }|の値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{6}}\ 座標空間において、原点Oと点A(1,0,-1)と点B(0,5,0)がある。\\
実数tを用いてt\ \overrightarrow{ OA }+\overrightarrow{ OB }と表される点全体をlとする。また、平面xy平面上\\
のy=x^2を満たす点全体からなる曲線をCとする。\\
(1)曲線C上の点P(a,a^2,0)を固定する。l上の点Qを、\overrightarrow{ OA }と\overrightarrow{ PQ }\\
が垂直であるようにとる。このとき、点Qの座標をaを用いて表せ。\\
(2)曲線C上の点Rとl上の点Sのうち、|\overrightarrow{ RS }|を最小にする点Rと点Sの\\
組み合わせを全て求めよ。また、そのときの|\overrightarrow{ RS }|の値を求めよ。
\end{eqnarray}
2022千葉大学理系過去問
【数C】ベクトル平面ベクトル:ベクトルの基本① 基本的な考え方「終わり-始め」
【数B】平面ベクトル:ベクトルの基本① 基本的な考え方「終わり-始め」
単元:
#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師:
理数個別チャンネル
問題文全文(内容文):
ベクトルの基本的な考え方、ベクトルの和、始点の変更に関して解説していきます.
この動画を見る
ベクトルの基本的な考え方、ベクトルの和、始点の変更に関して解説していきます.
【平面の方程式の求め方はこれ!】平面の方程式の求め方を2つ解説しました〔数学、高校数学〕
福田の数学〜九州大学2022年文系第2問〜点と平面の距離と対称点
単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 座標空間内の4点\\
O(0,0,0),A(1,1,0),B(2,1,2),P(4,0,-1)\\
を考える。3点O,A,Bを通る平面を\alphaとし、\overrightarrow{ a }=\overrightarrow{ OA },
\overrightarrow{ b }=\overrightarrow{ OB }とおく。\\
以下の問いに答えよ。\\
(1)ベクトル\overrightarrow{ a },\ \overrightarrow{ b }の両方に垂直であり、x成分が正であるような、大きさが1\\
のベクトル\overrightarrow{ n }を求めよ。\\
(2)点Pから平面\alphaに垂線を下ろし、その交点をQとおく。\\
線分PQの長さを求めよ。\\
(3)平面\alphaに関して点Pと対称な点P'の座標を求めよ。
\end{eqnarray}
2022九州大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{2}}\ 座標空間内の4点\\
O(0,0,0),A(1,1,0),B(2,1,2),P(4,0,-1)\\
を考える。3点O,A,Bを通る平面を\alphaとし、\overrightarrow{ a }=\overrightarrow{ OA },
\overrightarrow{ b }=\overrightarrow{ OB }とおく。\\
以下の問いに答えよ。\\
(1)ベクトル\overrightarrow{ a },\ \overrightarrow{ b }の両方に垂直であり、x成分が正であるような、大きさが1\\
のベクトル\overrightarrow{ n }を求めよ。\\
(2)点Pから平面\alphaに垂線を下ろし、その交点をQとおく。\\
線分PQの長さを求めよ。\\
(3)平面\alphaに関して点Pと対称な点P'の座標を求めよ。
\end{eqnarray}
2022九州大学文系過去問
福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ xy平面上の曲線Cを、媒介変数tを用いて次のように定める。\\
x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)\\
以下の問いに答えよ。\\
(1)区間0 \lt t \lt \frac{\pi}{6}において、\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0であることを示せ。\\
(2)曲線Cの0 \leqq t \leqq \frac{\pi}{6}の部分、x軸、直線y=\frac{1}{\sqrt3}xで囲まれた\\
図形の面積を求めよ。\\
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を\\
原点を中心として反時計回りに\frac{\pi}{3}だけ回転させた点はC上\\
にあることを示せ。\\
(4)曲線Cの概形を図示せよ。
\end{eqnarray}
2022九州大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}}\ xy平面上の曲線Cを、媒介変数tを用いて次のように定める。\\
x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)\\
以下の問いに答えよ。\\
(1)区間0 \lt t \lt \frac{\pi}{6}において、\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0であることを示せ。\\
(2)曲線Cの0 \leqq t \leqq \frac{\pi}{6}の部分、x軸、直線y=\frac{1}{\sqrt3}xで囲まれた\\
図形の面積を求めよ。\\
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を\\
原点を中心として反時計回りに\frac{\pi}{3}だけ回転させた点はC上\\
にあることを示せ。\\
(4)曲線Cの概形を図示せよ。
\end{eqnarray}
2022九州大学理系過去問