数学(高校生)
2021近畿大(医)二次関数と格子点(隠れ2021年問題)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2次関数$f(x)$
$\displaystyle \lim_{h\to 0} \dfrac{f(3+h)-f(3)}{h}=-2$
$\displaystyle \lim_{x\to 1}\dfrac{f(x)-f(1)}{x-1}=2$
$f(47)=0$
(1)$f(x)$と$f(x)$が最大となる$x$
(2)$f(x)\geqq 0$を満たす整数$x$の個数を求めよ.
(3)自然数$k$,$f(x)\geqq k$を満たす$k$が$21$個である$k$の範囲を求めよ.
(4)$f(x)\geqq y$を満たす正の整数の組$(x,y)$の個数を求めよ.
2021近畿大(医)過去問
この動画を見る
2次関数$f(x)$
$\displaystyle \lim_{h\to 0} \dfrac{f(3+h)-f(3)}{h}=-2$
$\displaystyle \lim_{x\to 1}\dfrac{f(x)-f(1)}{x-1}=2$
$f(47)=0$
(1)$f(x)$と$f(x)$が最大となる$x$
(2)$f(x)\geqq 0$を満たす整数$x$の個数を求めよ.
(3)自然数$k$,$f(x)\geqq k$を満たす$k$が$21$個である$k$の範囲を求めよ.
(4)$f(x)\geqq y$を満たす正の整数の組$(x,y)$の個数を求めよ.
2021近畿大(医)過去問
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第2問〜データの分析
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第2問}$
[1] 花子さんと太郎さんのクラスでは、文化祭でたこ焼き店を出店することになった。
二人は1皿当たりの価格をいくらにするかを検討している。次の表は、過去の文化祭で
のたこ焼き店の売り上げデータから、1皿あたりの価格と売り上げ数の関係を
まとめたものである。
$\begin{array}{|c|c|c|c|}
\hline 1皿あたりの価格(円) & 200 & 250 & 300\\
\hline 売り上げ数(皿) & 200 & 150 & 100\\\hline
\end{array}$
(1)まず、二人は、上の表から、1皿あたりの価格が50円上がると売り上げ数が
50皿減ると考えて、売り上げ数が1皿あたりの価格の1次関数で表される
と仮定した。このとき、1皿あたりの価格を$x$円とおくと、売り上げ数は
$\boxed{\ \ アイウ\ \ }-x$ $\cdots$①
と表される。
(2)次に、二人は、利益の求め方について考えた。
花子:利益は、売り上げ金額から必要な経費を引けば求められるよ。
太郎:売上金額は、1皿あたりの価格と売り上げ数の積で求まるね。
花子:必要な経費は、たこ焼き用器具の賃貸料と材料費の合計だね。
材料費は、売り上げ数と1皿あたりの材料費の積になるね。
二人は、次の三つの条件のもとで、1皿あたりの価格xを用いて
利益を表すことにした。
(条件1) 1皿あたりの価格がx円のときの売り上げ数として①を用いる。
(条件2) 材料は、①により得られる売り上げ数に必要な分量だけ仕入れる。
(条件3) 1皿あたりの材料費は160円である。たこ焼き用器具の賃貸料は
6000円である。材料費とたこ焼き用器具の賃貸料以外の経費はない。
利益は$y$円とおく。$y$を$x$の式で表すと
$y=-x^2+\boxed{\ \ エオカ\ \ }x-\boxed{\ \ キ\ \ }×10000$ $\cdots$②
である。
(3)太郎さんは利益を最大にしたいと考えた。②を用いて考えると、利益
が最大になるのは1個あたりの価格が$\boxed{\ \ クケコ\ \ }$円のときであり、
そのときの利益は$\boxed{\ \ サシスセ\ \ }$円である。
(4)花子さんは、利益を7500円以上となるようにしつつ、できるだけ安い
価格で提供したいと考えた。②を用いて考えると、利益が7500円以上となる
1皿あたりの価格のうち、最も安い価格は$\boxed{\ \ ソタチ\ \ }$円となる。
[2] 総務省が実施している国勢調査では都道府県ごとの総人口が調べられており、
その内訳として日本人人口と外国人人口が公表されている。また、外務省では旅券
(パスポート)を取得した人数を都道府県ごとに公表している。加えて
文部科学省では都道府県ごとの小学校に在籍する児童数を公表している。
そこで、47都道府県の、人口1万人あたりの外国人人口(以下、外国人数)、
人口1万人当たりの小学校児童数(以下、小学生数)、また、日本人1万人あたり
の旅券を取得した人数(以下、旅券取得者数)を、それぞれ計算した。
次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1(動画参照)の散布図に関する記述
である。
$(\textrm{I})$小学生数の四分位範囲は、外国人数の四分位範囲より大きい。
$(\textrm{II})$旅券取得者数の範囲は、外国人数の範囲より大きい。
$(\textrm{III})$旅券取得者数と小学生数の相関係数は、旅券取得者数と外国人数
の相関係数より大きい。
$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\boxed{\ \ ツ\ \ }}$である。
$(\boxed{\boxed{\ \ ツ\ \ }}$の解答群は動画参照)
(2)一般に、度数分布表
$\begin{array}{|c|c|c|c|c|c|c|c|}\hline
階級値 & x_1 & x_2 & x_3 & x_4 & \cdots & x_k & 計\\\hline
度数 & f_1 & f_2 & f_3 & f_4 & \cdots & f_k & n\\\hline
\end{array}$
が与えられていて、各階級に含まれるデータの値がすべてその階級値に
等しいと仮定すると、平均値$\bar{x}$は
$\bar{x}=\displaystyle \frac{1}{n}(x_1f_1+x_2f_2+x_3f_3+x_4f_4+\cdots+x_kf_k)$
で求めることができる。さらに階級の幅が一定で、その値が$h$のときは
$x_2=x_1+h, x_3=x_1+2h, x_4=x_1+3h, \cdots, x_k=x_1+(k-1)h$
に注意すると
$\bar{x}=\boxed{\boxed{\ \ テ\ \ }}$
と変形できる。
$\boxed{\boxed{\ \ テ\ \ }}$については、最も適当なものを、次の⓪~④のうちから一つ
選べ。
⓪$\displaystyle \frac{x_1}{n}(f_1+f_2+f_3+f_4+\cdots+f_k)$
①$\displaystyle \frac{h}{n}(f_1+2f_2+3f_3+4f_4+\cdots+kf_k)$
②$x_1+\displaystyle \frac{h}{n}(f_2+f_3+f_4+\cdots+f_k)$
③$x_1+\displaystyle \frac{h}{n}(f_2+2f_3+3f_4+\cdots+(k-1)f_k)$
④$\displaystyle \frac{1}{2}(f_1+f_k)x_1-\displaystyle \frac{1}{2}(f_1+kf_k)$
図2は、2008年における47都道府県の旅券取得者数のヒストグラムである。
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を
含まない。
図2(※動画参照)のヒストグラムに関して、各階級に含まれるデータの値が
すべてその階級値に等しいと仮定する。このとき、平均値$\bar{x}$は小数第1位を
四捨五入すると$\boxed{\ \ トナニ\ \ }$である。
(3)一般に、度数分布表
$\begin{array}{|c|c|c|c|c|c|}\hline
階級値 & x_1 & x_2 & \cdots & x_k & 計\\\hline
度数 & f_1 & f_2 & \cdots & f_k & n\\\hline
\end{array}$
が与えられていて、各階級に含まれるデータの値が全てその階級値に
等しいと仮定すると、分散$s^2$は
$s^2=\displaystyle \frac{1}{n}\left\{(x_1-\bar{x})^2f_1+(x_2-\bar{x})^2f_2+\cdots+(x_k-\bar{x})^2f_k\right\}$
で求めることができる。さらにs^2は
$s^2=\displaystyle \frac{1}{n} \left\{(x_1^2f_1+x_2^2f_2+\cdots+x_k^2f_k)-2\bar{x}× \boxed{\boxed{\ \ ヌ\ \ }}+(\bar{x})^2×\boxed{\boxed{\ \ ネ\ \ }}\right\}$
と変形できるので
$s^2=\displaystyle \frac{1}{n}(x_1^2f_1+x_2^2f_2+\cdots+x_k^2f_k)-\boxed{\boxed{\ \ ノ\ \ }}$ $\cdots$①
である。
$\boxed{\boxed{\ \ ヌ\ \ }}~\boxed{\boxed{\ \ ノ\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$n$
①$n^2$
②$\bar{x}$
③$n\bar{x}$
④$2n\bar{x}$
⑤$n^2\bar{x}$
⑥$(\bar{x})^2$
⑦$n(\bar{x})^2$
⑧$2n(\bar{x})^2$
⑨$3n(\bar{x})^2$
図3(※動画参照)は図2を再掲したヒストグラムである。
図3のヒストグラムに関して、各階級に含まれるデータの値が全て
その階級値に等しいと仮定すると、平均値$\bar{x}$は(2)で求めた$\boxed{\ \ トナニ\ \ }$
である。$\boxed{\ \ トナニ\ \ }$の値と式①を用いると、分散$s^2$は$\boxed{\boxed{\ \ ハ\ \ }}$である。
$\boxed{\boxed{\ \ ハ\ \ }}$については、最も近いものを、次の⓪~⑦のうちから一つ選べ。
⓪$3900$ ①$4900$ ②$5900$ ③$6900$
④$7900$ ⑤$8900$ ⑥$9900$ ⑦$10900$
2021共通テスト過去問
この動画を見る
${\large第2問}$
[1] 花子さんと太郎さんのクラスでは、文化祭でたこ焼き店を出店することになった。
二人は1皿当たりの価格をいくらにするかを検討している。次の表は、過去の文化祭で
のたこ焼き店の売り上げデータから、1皿あたりの価格と売り上げ数の関係を
まとめたものである。
$\begin{array}{|c|c|c|c|}
\hline 1皿あたりの価格(円) & 200 & 250 & 300\\
\hline 売り上げ数(皿) & 200 & 150 & 100\\\hline
\end{array}$
(1)まず、二人は、上の表から、1皿あたりの価格が50円上がると売り上げ数が
50皿減ると考えて、売り上げ数が1皿あたりの価格の1次関数で表される
と仮定した。このとき、1皿あたりの価格を$x$円とおくと、売り上げ数は
$\boxed{\ \ アイウ\ \ }-x$ $\cdots$①
と表される。
(2)次に、二人は、利益の求め方について考えた。
花子:利益は、売り上げ金額から必要な経費を引けば求められるよ。
太郎:売上金額は、1皿あたりの価格と売り上げ数の積で求まるね。
花子:必要な経費は、たこ焼き用器具の賃貸料と材料費の合計だね。
材料費は、売り上げ数と1皿あたりの材料費の積になるね。
二人は、次の三つの条件のもとで、1皿あたりの価格xを用いて
利益を表すことにした。
(条件1) 1皿あたりの価格がx円のときの売り上げ数として①を用いる。
(条件2) 材料は、①により得られる売り上げ数に必要な分量だけ仕入れる。
(条件3) 1皿あたりの材料費は160円である。たこ焼き用器具の賃貸料は
6000円である。材料費とたこ焼き用器具の賃貸料以外の経費はない。
利益は$y$円とおく。$y$を$x$の式で表すと
$y=-x^2+\boxed{\ \ エオカ\ \ }x-\boxed{\ \ キ\ \ }×10000$ $\cdots$②
である。
(3)太郎さんは利益を最大にしたいと考えた。②を用いて考えると、利益
が最大になるのは1個あたりの価格が$\boxed{\ \ クケコ\ \ }$円のときであり、
そのときの利益は$\boxed{\ \ サシスセ\ \ }$円である。
(4)花子さんは、利益を7500円以上となるようにしつつ、できるだけ安い
価格で提供したいと考えた。②を用いて考えると、利益が7500円以上となる
1皿あたりの価格のうち、最も安い価格は$\boxed{\ \ ソタチ\ \ }$円となる。
[2] 総務省が実施している国勢調査では都道府県ごとの総人口が調べられており、
その内訳として日本人人口と外国人人口が公表されている。また、外務省では旅券
(パスポート)を取得した人数を都道府県ごとに公表している。加えて
文部科学省では都道府県ごとの小学校に在籍する児童数を公表している。
そこで、47都道府県の、人口1万人あたりの外国人人口(以下、外国人数)、
人口1万人当たりの小学校児童数(以下、小学生数)、また、日本人1万人あたり
の旅券を取得した人数(以下、旅券取得者数)を、それぞれ計算した。
次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1(動画参照)の散布図に関する記述
である。
$(\textrm{I})$小学生数の四分位範囲は、外国人数の四分位範囲より大きい。
$(\textrm{II})$旅券取得者数の範囲は、外国人数の範囲より大きい。
$(\textrm{III})$旅券取得者数と小学生数の相関係数は、旅券取得者数と外国人数
の相関係数より大きい。
$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\boxed{\ \ ツ\ \ }}$である。
$(\boxed{\boxed{\ \ ツ\ \ }}$の解答群は動画参照)
(2)一般に、度数分布表
$\begin{array}{|c|c|c|c|c|c|c|c|}\hline
階級値 & x_1 & x_2 & x_3 & x_4 & \cdots & x_k & 計\\\hline
度数 & f_1 & f_2 & f_3 & f_4 & \cdots & f_k & n\\\hline
\end{array}$
が与えられていて、各階級に含まれるデータの値がすべてその階級値に
等しいと仮定すると、平均値$\bar{x}$は
$\bar{x}=\displaystyle \frac{1}{n}(x_1f_1+x_2f_2+x_3f_3+x_4f_4+\cdots+x_kf_k)$
で求めることができる。さらに階級の幅が一定で、その値が$h$のときは
$x_2=x_1+h, x_3=x_1+2h, x_4=x_1+3h, \cdots, x_k=x_1+(k-1)h$
に注意すると
$\bar{x}=\boxed{\boxed{\ \ テ\ \ }}$
と変形できる。
$\boxed{\boxed{\ \ テ\ \ }}$については、最も適当なものを、次の⓪~④のうちから一つ
選べ。
⓪$\displaystyle \frac{x_1}{n}(f_1+f_2+f_3+f_4+\cdots+f_k)$
①$\displaystyle \frac{h}{n}(f_1+2f_2+3f_3+4f_4+\cdots+kf_k)$
②$x_1+\displaystyle \frac{h}{n}(f_2+f_3+f_4+\cdots+f_k)$
③$x_1+\displaystyle \frac{h}{n}(f_2+2f_3+3f_4+\cdots+(k-1)f_k)$
④$\displaystyle \frac{1}{2}(f_1+f_k)x_1-\displaystyle \frac{1}{2}(f_1+kf_k)$
図2は、2008年における47都道府県の旅券取得者数のヒストグラムである。
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を
含まない。
図2(※動画参照)のヒストグラムに関して、各階級に含まれるデータの値が
すべてその階級値に等しいと仮定する。このとき、平均値$\bar{x}$は小数第1位を
四捨五入すると$\boxed{\ \ トナニ\ \ }$である。
(3)一般に、度数分布表
$\begin{array}{|c|c|c|c|c|c|}\hline
階級値 & x_1 & x_2 & \cdots & x_k & 計\\\hline
度数 & f_1 & f_2 & \cdots & f_k & n\\\hline
\end{array}$
が与えられていて、各階級に含まれるデータの値が全てその階級値に
等しいと仮定すると、分散$s^2$は
$s^2=\displaystyle \frac{1}{n}\left\{(x_1-\bar{x})^2f_1+(x_2-\bar{x})^2f_2+\cdots+(x_k-\bar{x})^2f_k\right\}$
で求めることができる。さらにs^2は
$s^2=\displaystyle \frac{1}{n} \left\{(x_1^2f_1+x_2^2f_2+\cdots+x_k^2f_k)-2\bar{x}× \boxed{\boxed{\ \ ヌ\ \ }}+(\bar{x})^2×\boxed{\boxed{\ \ ネ\ \ }}\right\}$
と変形できるので
$s^2=\displaystyle \frac{1}{n}(x_1^2f_1+x_2^2f_2+\cdots+x_k^2f_k)-\boxed{\boxed{\ \ ノ\ \ }}$ $\cdots$①
である。
$\boxed{\boxed{\ \ ヌ\ \ }}~\boxed{\boxed{\ \ ノ\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$n$
①$n^2$
②$\bar{x}$
③$n\bar{x}$
④$2n\bar{x}$
⑤$n^2\bar{x}$
⑥$(\bar{x})^2$
⑦$n(\bar{x})^2$
⑧$2n(\bar{x})^2$
⑨$3n(\bar{x})^2$
図3(※動画参照)は図2を再掲したヒストグラムである。
図3のヒストグラムに関して、各階級に含まれるデータの値が全て
その階級値に等しいと仮定すると、平均値$\bar{x}$は(2)で求めた$\boxed{\ \ トナニ\ \ }$
である。$\boxed{\ \ トナニ\ \ }$の値と式①を用いると、分散$s^2$は$\boxed{\boxed{\ \ ハ\ \ }}$である。
$\boxed{\boxed{\ \ ハ\ \ }}$については、最も近いものを、次の⓪~⑦のうちから一つ選べ。
⓪$3900$ ①$4900$ ②$5900$ ③$6900$
④$7900$ ⑤$8900$ ⑥$9900$ ⑦$10900$
2021共通テスト過去問
【理数個別の過去問解説】2014年度宮崎大学 数学 工学部前期第5問解説
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
不等式$\log_x y\lt 2+3\log_y x$の表す領域を座標平面上に図示せよ.
2014年度宮崎大学 数学 工学部前期第5問解説
この動画を見る
不等式$\log_x y\lt 2+3\log_y x$の表す領域を座標平面上に図示せよ.
2014年度宮崎大学 数学 工学部前期第5問解説
【数Ⅱ】指数関数・対数関数:指数計算 初歩の確認
2021関西医科大 複素数
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha-\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$\beta=\alpha+\alpha^2+\alpha^4$
(1)$\beta+\delta,\beta\delta$の値を求めよ.
(2)$\beta,\delta$の値を求めよ.
(3)①$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi$の値を求めよ.
②$\sin\dfrac{\pi}{7}・\sin\dfrac{2\pi}{7}\sin\dfrac{3}{7}\pi$の値を求めよ.
2021関西医科大過去問
この動画を見る
$\alpha-\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
$\beta=\alpha+\alpha^2+\alpha^4$
(1)$\beta+\delta,\beta\delta$の値を求めよ.
(2)$\beta,\delta$の値を求めよ.
(3)①$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi$の値を求めよ.
②$\sin\dfrac{\pi}{7}・\sin\dfrac{2\pi}{7}\sin\dfrac{3}{7}\pi$の値を求めよ.
2021関西医科大過去問
円錐と内接球3つ D 立教新座(改)2021
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
球Pと球Qは半径が等しい
球Pと球Rは半径が異なる
(1)球Pの半径は?
(2)球Rの半径は?
*図は動画内参照
2021立教新座高等学校(改)
この動画を見る
球Pと球Qは半径が等しい
球Pと球Rは半径が異なる
(1)球Pの半径は?
(2)球Rの半径は?
*図は動画内参照
2021立教新座高等学校(改)
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第1問〜対数関数と三角関数
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第1問}$
[1] (1)$\log_{10}10=\boxed{\ \ ア\ \ }$である。また、$\log_{10}5,\log_{10}15$をそれぞれ
$\log_{10}2と\log_{10}3$を用いて表すと
$\log_{10}5=\boxed{\ \ イ\ \ }\log_{10}2+\boxed{\ \ ウ\ \ }$
$\log_{10}15=\boxed{\ \ エ\ \ }\log_{10}2+\log_{10}3+\boxed{\ \ オ\ \ }$
(2)太郎さんと花子さんは、$15^{20}$について話している。
以下では、$\log_{10}2=0.3010、\log_{10}3=0.4771$とする。
太郎:$15^{20}$は何桁の数だろう。
花子:$15$の20乗を求めるのは大変だね。$\log_{10}15^{20}$の整数部分に
着目してみようよ。
$\log_{10}15^{20}$は
$\boxed{\ \ カキ\ \ } \lt \log_{10}15^{20} \lt \boxed{\ \ カキ\ \ }+1$
を満たす。よって、$15^{20}は\boxed{\ \ クケ\ \ }$桁の数である。
太郎:$15^{20}$の最高位の数字も知りたいね。だけど、$\log_{10}15^{20}$の
整数部分にだけ着目してもわからないな。
花子:$N・10^{\boxed{カキ}} \lt 15^{20} \lt (N+1)・10^{\boxed{カキ}}$を満たすような
正の整数Nに着目してみたらどうかな。
$\log_{10}15^{20}$の小数部分は$\log_{10}15^{20}-\boxed{\ \ カキ\ \ }$であり
$\log_{10}\boxed{\ \ コ\ \ } \lt \log_{10}15^{20}-\boxed{\ \ カキ\ \ } \lt \log_{10}(\boxed{\ \ コ\ \ }+1)$
が成り立つので、$15^{20}$の最高位の数字は$\boxed{\ \ サ\ \ }$である。
[2]座標平面上の原点を中心とする半径1の円周上に3点$P(\cos\theta,\sin\theta),$
$Q(\cos\alpha,\sin\alpha),R(\cos\beta,\sin\beta)$がある。ただし、$0 \leqq \theta \lt \alpha \lt \beta \lt 2\pi$
とする。このとき、$s$と$t$を次のように定める。
$s=\cos\theta+\cos\alpha+\cos\beta, t=\sin\theta+\sin\alpha+\sin\beta$
(1)$\triangle PQR$が正三角形や二等辺三角形のときの$s$と$t$の値について考察しよう。
考察$1:\triangle PQR$が正三角形である場合を考える。
この場合、$\alpha,\beta$を$\theta$で表すと
$\alpha=\theta+\displaystyle \frac{\boxed{\ \ シ\ \ }}{3}\pi, \beta=\theta+\displaystyle \frac{\boxed{\ \ ス\ \ }}{3}\pi$
であり、加法定理により
$\cos\alpha=\boxed{\boxed{\ \ セ\ \ }}, \sin\alpha=\boxed{\boxed{\ \ ソ\ \ }}$
である。同様に、$\cos\beta$および$\sin\beta$を、$\sin\theta$と$\cos\theta$を用いて表すことができる。
これらのことから、$s=t=\boxed{\ \ タ\ \ }$である。
$\boxed{\boxed{\ \ セ\ \ }},\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
①$\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$
④$-\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
⑤$-\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$-\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$-\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$
考察2:$\triangle PQR$が$PQ=PR$となる二等辺三角形である場合を考える。
例えば、点$P$が直線$y=x$上にあり、点$Q,R$が直線$y=x$に関して対称
であるときを考える。このとき、$\theta=\displaystyle \frac{\pi}{4}$である。また、$\alpha$は
$\alpha \lt \displaystyle \frac{5}{4}\pi, \beta$は$\displaystyle \frac{5}{4}\pi \lt \beta$を満たし、点$Q,R$の座標について、
$\sin\beta=\cos\alpha, \cos\beta=\sin\alpha$が成り立つ。よって
$s=t=\displaystyle \frac{\sqrt{\boxed{\ \ チ\ \ }}}{\boxed{\ \ ツ\ \ }}+\sin\alpha+\cos\alpha$
である。
ここで、三角関数の合成により
$\sin\alpha+\cos\alpha=\sqrt{\boxed{\ \ テ\ \ }}\sin\left(\alpha+\displaystyle \frac{\pi}{\boxed{\ \ ト\ \ }}\right)$
である。したがって
$\alpha=\displaystyle \frac{\boxed{\ \ ナニ\ \ }}{12}\pi, \beta=\displaystyle \frac{\boxed{\ \ ヌネ\ \ }}{12}\pi$
のとき、$s=t=0$である。
(2)次に、$s$と$t$の値を定めるときの$\theta,\alpha,\beta$の関係について考察しよう。
考察$3:s=t=0$の場合を考える。
この場合、$\sin^2\theta+\cos^2\theta=1$により、$\alpha$と$\beta$について考えると
$\cos\alpha\cos\beta+\sin\alpha\sin\beta=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
である。
同様に、$\theta$と$\alpha$について考えると
$\cos\theta\cos\alpha+\sin\theta\sin\alpha=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
であるから、$\theta,\alpha,\beta$の範囲に注意すると
$\beta-\alpha=\alpha-\theta=\displaystyle \frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\pi$
という関係が得られる。
(3)これまでの考察を振り返ると、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ ホ\ \ }}$であることが分かる。
$\boxed{\boxed{\ \ ホ\ \ }}$の解答群
⓪$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$ならば
$\triangle PQR$は正三角形である。
①$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$で
あっても$\triangle PQR$は正三角形でない場合がある。
②$\triangle PQR$が正三角形であっても$s=t=0$でない場合があるが
$s=t=0$ならば$\triangle PQR$は正三角形である。
③$\triangle PQR$が正三角形であっても$s=t=0$でない場合があり、
$s=t=0$であっても$\triangle PQR$が正三角形でない場合がある。
この動画を見る
${\large第1問}$
[1] (1)$\log_{10}10=\boxed{\ \ ア\ \ }$である。また、$\log_{10}5,\log_{10}15$をそれぞれ
$\log_{10}2と\log_{10}3$を用いて表すと
$\log_{10}5=\boxed{\ \ イ\ \ }\log_{10}2+\boxed{\ \ ウ\ \ }$
$\log_{10}15=\boxed{\ \ エ\ \ }\log_{10}2+\log_{10}3+\boxed{\ \ オ\ \ }$
(2)太郎さんと花子さんは、$15^{20}$について話している。
以下では、$\log_{10}2=0.3010、\log_{10}3=0.4771$とする。
太郎:$15^{20}$は何桁の数だろう。
花子:$15$の20乗を求めるのは大変だね。$\log_{10}15^{20}$の整数部分に
着目してみようよ。
$\log_{10}15^{20}$は
$\boxed{\ \ カキ\ \ } \lt \log_{10}15^{20} \lt \boxed{\ \ カキ\ \ }+1$
を満たす。よって、$15^{20}は\boxed{\ \ クケ\ \ }$桁の数である。
太郎:$15^{20}$の最高位の数字も知りたいね。だけど、$\log_{10}15^{20}$の
整数部分にだけ着目してもわからないな。
花子:$N・10^{\boxed{カキ}} \lt 15^{20} \lt (N+1)・10^{\boxed{カキ}}$を満たすような
正の整数Nに着目してみたらどうかな。
$\log_{10}15^{20}$の小数部分は$\log_{10}15^{20}-\boxed{\ \ カキ\ \ }$であり
$\log_{10}\boxed{\ \ コ\ \ } \lt \log_{10}15^{20}-\boxed{\ \ カキ\ \ } \lt \log_{10}(\boxed{\ \ コ\ \ }+1)$
が成り立つので、$15^{20}$の最高位の数字は$\boxed{\ \ サ\ \ }$である。
[2]座標平面上の原点を中心とする半径1の円周上に3点$P(\cos\theta,\sin\theta),$
$Q(\cos\alpha,\sin\alpha),R(\cos\beta,\sin\beta)$がある。ただし、$0 \leqq \theta \lt \alpha \lt \beta \lt 2\pi$
とする。このとき、$s$と$t$を次のように定める。
$s=\cos\theta+\cos\alpha+\cos\beta, t=\sin\theta+\sin\alpha+\sin\beta$
(1)$\triangle PQR$が正三角形や二等辺三角形のときの$s$と$t$の値について考察しよう。
考察$1:\triangle PQR$が正三角形である場合を考える。
この場合、$\alpha,\beta$を$\theta$で表すと
$\alpha=\theta+\displaystyle \frac{\boxed{\ \ シ\ \ }}{3}\pi, \beta=\theta+\displaystyle \frac{\boxed{\ \ ス\ \ }}{3}\pi$
であり、加法定理により
$\cos\alpha=\boxed{\boxed{\ \ セ\ \ }}, \sin\alpha=\boxed{\boxed{\ \ ソ\ \ }}$
である。同様に、$\cos\beta$および$\sin\beta$を、$\sin\theta$と$\cos\theta$を用いて表すことができる。
これらのことから、$s=t=\boxed{\ \ タ\ \ }$である。
$\boxed{\boxed{\ \ セ\ \ }},\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
①$\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$
④$-\displaystyle \frac{1}{2}\sin\theta+\displaystyle \frac{\sqrt3}{2}\cos\theta$
⑤$-\displaystyle \frac{\sqrt3}{2}\sin\theta+\displaystyle \frac{1}{2}\cos\theta$
②$-\displaystyle \frac{1}{2}\sin\theta-\displaystyle \frac{\sqrt3}{2}\cos\theta$
③$-\displaystyle \frac{\sqrt3}{2}\sin\theta-\displaystyle \frac{1}{2}\cos\theta$
考察2:$\triangle PQR$が$PQ=PR$となる二等辺三角形である場合を考える。
例えば、点$P$が直線$y=x$上にあり、点$Q,R$が直線$y=x$に関して対称
であるときを考える。このとき、$\theta=\displaystyle \frac{\pi}{4}$である。また、$\alpha$は
$\alpha \lt \displaystyle \frac{5}{4}\pi, \beta$は$\displaystyle \frac{5}{4}\pi \lt \beta$を満たし、点$Q,R$の座標について、
$\sin\beta=\cos\alpha, \cos\beta=\sin\alpha$が成り立つ。よって
$s=t=\displaystyle \frac{\sqrt{\boxed{\ \ チ\ \ }}}{\boxed{\ \ ツ\ \ }}+\sin\alpha+\cos\alpha$
である。
ここで、三角関数の合成により
$\sin\alpha+\cos\alpha=\sqrt{\boxed{\ \ テ\ \ }}\sin\left(\alpha+\displaystyle \frac{\pi}{\boxed{\ \ ト\ \ }}\right)$
である。したがって
$\alpha=\displaystyle \frac{\boxed{\ \ ナニ\ \ }}{12}\pi, \beta=\displaystyle \frac{\boxed{\ \ ヌネ\ \ }}{12}\pi$
のとき、$s=t=0$である。
(2)次に、$s$と$t$の値を定めるときの$\theta,\alpha,\beta$の関係について考察しよう。
考察$3:s=t=0$の場合を考える。
この場合、$\sin^2\theta+\cos^2\theta=1$により、$\alpha$と$\beta$について考えると
$\cos\alpha\cos\beta+\sin\alpha\sin\beta=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
である。
同様に、$\theta$と$\alpha$について考えると
$\cos\theta\cos\alpha+\sin\theta\sin\alpha=\displaystyle \frac{\boxed{\ \ ノハ\ \ }}{\boxed{\ \ ヒ\ \ }}$
であるから、$\theta,\alpha,\beta$の範囲に注意すると
$\beta-\alpha=\alpha-\theta=\displaystyle \frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\pi$
という関係が得られる。
(3)これまでの考察を振り返ると、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ ホ\ \ }}$であることが分かる。
$\boxed{\boxed{\ \ ホ\ \ }}$の解答群
⓪$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$ならば
$\triangle PQR$は正三角形である。
①$\triangle PQR$が正三角形ならば$s=t=0$であり、$s=t=0$で
あっても$\triangle PQR$は正三角形でない場合がある。
②$\triangle PQR$が正三角形であっても$s=t=0$でない場合があるが
$s=t=0$ならば$\triangle PQR$は正三角形である。
③$\triangle PQR$が正三角形であっても$s=t=0$でない場合があり、
$s=t=0$であっても$\triangle PQR$が正三角形でない場合がある。
2021 智弁和歌山 B
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BCはABの何倍?
*図は動画内参照
2021智辯学園和歌山高等学校
この動画を見る
BCはABの何倍?
*図は動画内参照
2021智辯学園和歌山高等学校
智弁和歌山2021 A
単元:
#数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
AB=5,BC=3,AE=?
*図は動画内参照
2021智辯学園和歌山高等学校
この動画を見る
AB=5,BC=3,AE=?
*図は動画内参照
2021智辯学園和歌山高等学校
円錐に内接する立方体 智弁和歌山(改) B
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#立体図形#立体図形その他#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
円錐の底面の半径は?
*図は動画内参照
2021智辯学園和歌山高等学校(改)
この動画を見る
円錐の底面の半径は?
*図は動画内参照
2021智辯学園和歌山高等学校(改)
2021関西医科大 絶対値記号・整数問題
単元:
#数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
この動画を見る
$x^2-\vert x \vert y+y^2=3$
整数$(x,y)$を求めよ.
2021関西医科大過去問
共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。
(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。
[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。
(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。
問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。
(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。
問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。
太郎さんは、この問題を解決するために、次の構想を立てた。
問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。
直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。
$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。
$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形
$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。
2021共通テスト過去問
この動画を見る
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。
(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。
[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。
(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。
問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。
(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。
問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。
太郎さんは、この問題を解決するために、次の構想を立てた。
問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。
直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。
$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。
$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形
$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$
(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。
2021共通テスト過去問
2021東京女子医大 対数
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$は実数であり,$x\gt 0,y\gt 0$である.
$xy^{1+\log_2 x^2}=1$を満たすとき,$xy$のとりうる値の範囲を求めよ.
2021東京女子医大過去問
この動画を見る
$x,y$は実数であり,$x\gt 0,y\gt 0$である.
$xy^{1+\log_2 x^2}=1$を満たすとき,$xy$のとりうる値の範囲を求めよ.
2021東京女子医大過去問
【数学】何分まで考えていいのか?偏差値別の考える時間【篠原好】
単元:
#その他#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
偏差値別の考える時間
「数学は何分まで考えていいのか?」についてお話しています。
この動画を見る
偏差値別の考える時間
「数学は何分まで考えていいのか?」についてお話しています。
難易度MAX 2021ラ・サール最後の問題 D
単元:
#数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
半径1の2つの円が重ならないように正方形内を動く。
円の中心P,Qが存在しうる範囲の面積を求めよ。
*図は動画内参照
2021ラ・サール高等学校
この動画を見る
半径1の2つの円が重ならないように正方形内を動く。
円の中心P,Qが存在しうる範囲の面積を求めよ。
*図は動画内参照
2021ラ・サール高等学校
2021藤田医科大 微分の公式
単元:
#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問
この動画を見る
$f(x)=\sqrt{x+\sqrt{x^2-9}}$
$f`_{(5)}=\Box$
$\Box$を求めよ.
2021藤田医科大過去問
直角三角形の中の正方形 A 解き方2通り 岡山白陵
単元:
#数学(中学生)#中2数学#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#三角形と四角形#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
正方形の1辺の長さは?
*図は動画内参照
岡山白陵高等学校
この動画を見る
正方形の1辺の長さは?
*図は動画内参照
岡山白陵高等学校
2021年藤田医科大
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.
2021藤田医科大過去問
この動画を見る
$x,y$は実数である.
$\left(\dfrac{2+\sqrt{-77}}{9}\right)^{2021}=\dfrac{x+y\sqrt{-77}}{9}$
$x^2+77y^2$の値を求めよ.
2021藤田医科大過去問
秘技!瞬間平方完成
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^2+n+1=5^m$を満たす自然数$(m,n)$は存在しないことを示せ.
この動画を見る
$n^2+n+1=5^m$を満たす自然数$(m,n)$は存在しないことを示せ.
【数学II】対数の本質・必殺技、教えます(対数のまとめ)【固定コメ必読】
単元:
#数Ⅱ#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
①$2^{30}$は何桁?
②$(\displaystyle \frac{1}{3})^{10}$を小数に小数第何位に初めて0出ない数字が現れるか
この動画を見る
①$2^{30}$は何桁?
②$(\displaystyle \frac{1}{3})^{10}$を小数に小数第何位に初めて0出ない数字が現れるか
気がつけば爽快!! B
単元:
#数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
BD:DC=?
*図は動画内参照
2021西大和学園高等学校
この動画を見る
BD:DC=?
*図は動画内参照
2021西大和学園高等学校
割ると余りと商が等しい 2021西大和学園B
単元:
#数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?
2021西大和学園高等学校
この動画を見る
自然数Nを49で割ったとき商と余りが等しくなった。
このようなNのうち2021より大きいNの個数は?
2021西大和学園高等学校
式の値
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x+\dfrac{1}{x}=\sqrt3$のとき,$x^{18}+x^{12}+x^6+1$の値を求めよ.
この動画を見る
$x+\dfrac{1}{x}=\sqrt3$のとき,$x^{18}+x^{12}+x^6+1$の値を求めよ.
8進数の7の倍数・3の倍数判定法
単元:
#数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$8$進法で表記された
$\boxed{a}\boxed{b}\boxed{c}\boxed{d}\boxed{e}\boxed{f}$
が①$7$で割り切れる必要十分条件を求めよ.
②$3$で割り切れる必要十分条件を求めよ.
この動画を見る
$8$進法で表記された
$\boxed{a}\boxed{b}\boxed{c}\boxed{d}\boxed{e}\boxed{f}$
が①$7$で割り切れる必要十分条件を求めよ.
②$3$で割り切れる必要十分条件を求めよ.
共通テスト2021年詳しい解説〜共通テスト2021年2B第3問〜統計
単元:
#数学(中学生)#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
${\large第3問}$
Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、
Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の
生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この
1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の
読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間
の母平均を$m$, 母標準偏差を150とする。
(1)全く読書をしなかった生徒の母比率を0.5とする。このとき、100人の無作為標本の
うちで全く読書をしなかった生徒の数を表す確率変数をXとすると、$X$は$\boxed{\boxed{\ \ ア\ \ }}$
に従う。また、Xの平均(期待値)は$\boxed{\ \ イウ\ \ }$、標準偏差は$\boxed{\ \ エ\ \ }$である。
$\boxed{\boxed{\ \ ア\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪正規分布$N(0,1)$
①二項分布$B(0,1)$
②正規分布$N(100,0.5)$
③二項分布$B(100,0.5)$
④正規分布$N(100,36)$
⑤二項分布$B(100,36)$
(2)標本の大きさ100は十分に大きいので、100人のうち全く読書をしなかった生徒
の数は近似的に正規分布に従う。
全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒
が36人以下となる確率を$p_5$とおく。$p_5$の近似値を求めると、$p_5=\boxed{\boxed{\ \ オ\ \ }}$である。
また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をしなかった
生徒が36人以下となる確率を$p_4$とおくと、$\boxed{\boxed{\ \ カ\ \ }}$である。
$\boxed{\boxed{\ \ オ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪$0.001$
①$0.003$
②$0.026$
③$0.050$
④$0.133$
⑤$0.497$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$p_4 \lt p_5$
①$p_4 = p_5$
②$p_4 \gt p_5$
(3)1週間の読書時間の母平均$m$に対する信頼度95%の信頼区間を
$C_1 \leqq m \leqq C_2$とする。標本の大きさ100は十分大きいことと、1週間
の読書時間の標本平均が204、母標準偏差が150であることを用いると、
$C_1+C_2=\boxed{\ \ キクケ\ \ }$、$C_2-C_1=\boxed{\ \ コサ\ \ }.\boxed{\ \ シ\ \ }$であることがわかる。
また、母平均$m$と$C_1,C_2$については$\boxed{\boxed{\ \ ス\ \ }}$。
$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪$C_1 \leqq m \leqq C_2$が必ず成り立つ
①$m \leqq C_2$は必ず成り立つが、$C_1 \leqq m$が成り立つとは限らない
②$C_1 \leqq m$は必ず成り立つが、$m \leqq C_2$が成り立つとは限らない
③$C_1 \leqq m$も$m \leqq C_2$も成り立つとは限らない
(4)Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が
調査をしていることを知らずに、図書委員会として校長先生と同様の調査を
独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、
対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における
全く読書をしなかった生徒の数を$n$とする。
校長先生の調査結果によると全く読書をしなかった生徒は36人であり、
$\boxed{\boxed{\ \ セ\ \ }}$。
$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪$n$は必ず36に等しい
①$n$は必ず36未満である
②$n$は必ず36より大きい
③$n$と36との大小はわからない
(5)(4)の図書委員会が行った調査結果による母平均$m$に対する信頼度95%の
信頼区間を$D_1 \leqq m \leqq D_2$、校長先生が行った調査結果による母平均$m$に対す
る信頼度95%の信頼区間を(3)の$C_1 \leqq m \leqq C_2$とする。ただし、母集団は同一
であり、1週間の読書時間の母標準偏差は150とする。
このとき、次の⓪~⑤のうち、正しいものは$\boxed{\boxed{\ \ ソ\ \ }}と\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ ソ\ \ }}$, $\boxed{\boxed{\ \ タ\ \ }}$の解答群(解答の順序は問わない。)
⓪$C_1=D_1とC_2=D_2$が必ず成り立つ。
①$C_1 \lt D_2$または$D_1 \lt C_2$のどちらか一方のみが成り立つ。
②$D_2 \lt C_1$または$C_2 \lt D_1$となる場合もある。
③$C_2-C_1 \gt D_2-D_1$が必ず成り立つ。
④$C_2-C_1 = D_2-D_1$が必ず成り立つ。
⑤$C_2-C_1 \lt D_2-D_1$が必ず成り立つ。
2021共通テスト過去問
この動画を見る
${\large第3問}$
Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、
Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の
生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この
1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の
読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間
の母平均を$m$, 母標準偏差を150とする。
(1)全く読書をしなかった生徒の母比率を0.5とする。このとき、100人の無作為標本の
うちで全く読書をしなかった生徒の数を表す確率変数をXとすると、$X$は$\boxed{\boxed{\ \ ア\ \ }}$
に従う。また、Xの平均(期待値)は$\boxed{\ \ イウ\ \ }$、標準偏差は$\boxed{\ \ エ\ \ }$である。
$\boxed{\boxed{\ \ ア\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪正規分布$N(0,1)$
①二項分布$B(0,1)$
②正規分布$N(100,0.5)$
③二項分布$B(100,0.5)$
④正規分布$N(100,36)$
⑤二項分布$B(100,36)$
(2)標本の大きさ100は十分に大きいので、100人のうち全く読書をしなかった生徒
の数は近似的に正規分布に従う。
全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒
が36人以下となる確率を$p_5$とおく。$p_5$の近似値を求めると、$p_5=\boxed{\boxed{\ \ オ\ \ }}$である。
また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をしなかった
生徒が36人以下となる確率を$p_4$とおくと、$\boxed{\boxed{\ \ カ\ \ }}$である。
$\boxed{\boxed{\ \ オ\ \ }}$については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪$0.001$
①$0.003$
②$0.026$
③$0.050$
④$0.133$
⑤$0.497$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪$p_4 \lt p_5$
①$p_4 = p_5$
②$p_4 \gt p_5$
(3)1週間の読書時間の母平均$m$に対する信頼度95%の信頼区間を
$C_1 \leqq m \leqq C_2$とする。標本の大きさ100は十分大きいことと、1週間
の読書時間の標本平均が204、母標準偏差が150であることを用いると、
$C_1+C_2=\boxed{\ \ キクケ\ \ }$、$C_2-C_1=\boxed{\ \ コサ\ \ }.\boxed{\ \ シ\ \ }$であることがわかる。
また、母平均$m$と$C_1,C_2$については$\boxed{\boxed{\ \ ス\ \ }}$。
$\boxed{\boxed{\ \ ス\ \ }}$の解答群
⓪$C_1 \leqq m \leqq C_2$が必ず成り立つ
①$m \leqq C_2$は必ず成り立つが、$C_1 \leqq m$が成り立つとは限らない
②$C_1 \leqq m$は必ず成り立つが、$m \leqq C_2$が成り立つとは限らない
③$C_1 \leqq m$も$m \leqq C_2$も成り立つとは限らない
(4)Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が
調査をしていることを知らずに、図書委員会として校長先生と同様の調査を
独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、
対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における
全く読書をしなかった生徒の数を$n$とする。
校長先生の調査結果によると全く読書をしなかった生徒は36人であり、
$\boxed{\boxed{\ \ セ\ \ }}$。
$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪$n$は必ず36に等しい
①$n$は必ず36未満である
②$n$は必ず36より大きい
③$n$と36との大小はわからない
(5)(4)の図書委員会が行った調査結果による母平均$m$に対する信頼度95%の
信頼区間を$D_1 \leqq m \leqq D_2$、校長先生が行った調査結果による母平均$m$に対す
る信頼度95%の信頼区間を(3)の$C_1 \leqq m \leqq C_2$とする。ただし、母集団は同一
であり、1週間の読書時間の母標準偏差は150とする。
このとき、次の⓪~⑤のうち、正しいものは$\boxed{\boxed{\ \ ソ\ \ }}と\boxed{\boxed{\ \ タ\ \ }}$である。
$\boxed{\boxed{\ \ ソ\ \ }}$, $\boxed{\boxed{\ \ タ\ \ }}$の解答群(解答の順序は問わない。)
⓪$C_1=D_1とC_2=D_2$が必ず成り立つ。
①$C_1 \lt D_2$または$D_1 \lt C_2$のどちらか一方のみが成り立つ。
②$D_2 \lt C_1$または$C_2 \lt D_1$となる場合もある。
③$C_2-C_1 \gt D_2-D_1$が必ず成り立つ。
④$C_2-C_1 = D_2-D_1$が必ず成り立つ。
⑤$C_2-C_1 \lt D_2-D_1$が必ず成り立つ。
2021共通テスト過去問
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$p,q$は素数であり,$n$は自然数とする.これを解け.
$p^2+pq+q^2=n^2$
この動画を見る
$p,q$は素数であり,$n$は自然数とする.これを解け.
$p^2+pq+q^2=n^2$
【数Ⅰ】2次関数:放物線y=-2x²-12x-14を平行移動して、放物線y=-2x²+4x-3に重ねるには、どのように平行移動するとよいか。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
放物線y=-2x²-12x-14を平行移動して、放物線y=-2x²+4x-3に重ねるには、どのように平行移動するとよいか。
この動画を見る
放物線y=-2x²-12x-14を平行移動して、放物線y=-2x²+4x-3に重ねるには、どのように平行移動するとよいか。
【数Ⅰ】2次関数:次の座標やグラフを①x軸に関して、②y軸に関して、③原点に関して、それぞれ対称移動したときの座標や式を求めよう。
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の座標やグラフを①x軸に関して、②y軸に関して、③原点に関して、それぞれ対称移動したときの座標や式を求めよう。
(1)$ (4,-3)$
(2)$y=-\dfrac{1}{3x^2}-2x+1$
この動画を見る
次の座標やグラフを①x軸に関して、②y軸に関して、③原点に関して、それぞれ対称移動したときの座標や式を求めよう。
(1)$ (4,-3)$
(2)$y=-\dfrac{1}{3x^2}-2x+1$
共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル
単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。
$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+\overrightarrow{ A_1C_1 }=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。
(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。
面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。
次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }}, \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$
最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。
$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない
(ただし、少なくとも1組の対辺が平行な四角形を台形という)
2021共通テスト過去問
この動画を見る
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。
$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+\overrightarrow{ A_1C_1 }=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。
(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。
面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。
次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }}, \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。
$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$
最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。
$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない
(ただし、少なくとも1組の対辺が平行な四角形を台形という)
2021共通テスト過去問
これは無理数か?
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt{97-56\sqrt3}+\sqrt{73+40\sqrt3}$は無理数か?
この動画を見る
$\sqrt{97-56\sqrt3}+\sqrt{73+40\sqrt3}$は無理数か?