数学(高校生) - 質問解決D.B.(データベース) - Page 19

数学(高校生)

福田のおもしろ数学129〜三角関数の最大問題

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\frac{1+\sin\theta}{2+\cos\theta}$($\theta$は実数)の最大値を求めよ。
この動画を見る 

整数問題 城北高校

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
20以下の自然数nのうち
$(n+1)^2+(n+3)^2+(n+5)^2$が7の倍数となるものは何個?

城北高等学校
この動画を見る 

大学入試問題#807「落ち着いて解く!」 #福島県立医科大学(2019) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
実数$x$についての関数の列$\{f_n(x\})$が
$f_n(x)=\displaystyle \sum_{k=1}^n \displaystyle \frac{x^k}{k}-2\displaystyle \int_{0}^{1} f_n(t)dt$を満たしている。
$\displaystyle \lim_{ n \to \infty } f_n(0)$を求めよ。

出典:2019年福島県立医科大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第1問(3)〜指数法則と式の値

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)$10^x$=25, $100^y$=400 のとき、$3x$+$6y$-2=$\boxed{エ}$ である。
この動画を見る 

東大生のワイヤレスイヤホンの見付け方が凄すぎた

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ワイヤレスイヤホンを落としたときの見つけ方
三角形の外心の話です
この動画を見る 

大学入試問題#806「The 良問!」 兵庫県立大学中期(2014) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
微分可能な関数$f(x)$が
$f(x)=\displaystyle \int_{0}^{x} \sqrt{ f(t)^2+1 }\ dt$を満たすとする。
このとき以下の問いに答えよ。
1.$f'(x)$と$f''(x)$を$f(x)$で表せ。
2.関数$log(f(x)+f'(x))$を求めよ。
3.$f(x)$を求めよ。

出典:2014年兵庫県立大学中期 入試問題
この動画を見る 

平方根 法政大学高校

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(a-2 \sqrt 2)(4+3 \sqrt 2) = \sqrt 2b$となる整数$a,b$を求めよ

法政大学高等学校
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第1問(2)〜不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)次の連立不等式で表される領域の面積は$\boxed{イ}$+$\boxed{ウ}\pi$ である。
$\left\{\begin{array}{1}
x^2+y^2≦4|x|+4|y|\\
x^2≦y^2\\
\end{array}\right.$
この動画を見る 

みんな何問できた?

アイキャッチ画像
単元: #算数(中学受験)#その他#その他#その他#その他#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
①$e^{i \pi}+1=0$

②$\displaystyle \frac{a^2u}{at^2}=v^2 \frac{a^2u}{ax^2}$

③底辺$\times$高さ$\div 2$

④$x=\frac{-b \pm \sqrt{ b^2-4ac }}{2a}$

⑤$E=mc^2$

⑥$2 \pi r$

⑦$\displaystyle \frac{av}{at}+(v・\triangledown)v=-\frac{1}{p}\triangledown p+v \triangledown ^2v+f(x,t)$

⑧$\frac{4\pi r^3}{3}$
この動画を見る 

何問できた?

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
展開の問題
①$(x+2)(x+3)$

②$(3x+5)(3x-2)$

③$(x-2)^2$

④$\require{physics} \qty( 3x+\frac{1}{5} ) \require{physics} \qty( 3x-\frac{1}{5} )$

⑤$(t+3)^2$
この動画を見る 

福田のおもしろ数学127〜こんな漸化式解けるの?〜難しい漸化式の解き方

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$a_1$=$\displaystyle\frac{1}{2}$, $a_{n+1}$=$\sqrt{\displaystyle\frac{a_n+1}{2}}$ を満たす数列$\left\{a_n\right\}$の一般項$a_n$を求めよ。
この動画を見る 

大学入試問題#805「特に言うことないよねーw」 #東邦大学医学部(2004) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{ \pi } (\sin2x\cos\ x+\sin\ x \cos2x) dx$

出典:2004年東邦大学医学部
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第1問(1)〜4次式の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$x$が実数であるとき、$x(x+1)(x+2)(x+3)$ の最小値は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

因数分解の裏技

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
たすき掛けの因数分解の裏技説明動画です
$5x^2-11x+2=??$
この動画を見る 

福田のおもしろ数学126〜条件付き最大値の問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
正の数$x$, $y$が$x^2$-$2x$+$4y^2$=0 を満たして変わるとき、$xy$の最大値を求めよ。
この動画を見る 

大学入試問題#804「このタイプは定期的に出題」 #兵庫県立大学中期(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=2\sin2x-\sin\ x$とする。
定積分$\displaystyle \int_{0}^{\pi} |f(x)| dx$の値を求めよ。

出典:2014年兵庫県立大学中期 入試問題
この動画を見る 

すべて〇〇しなくていい。千葉工大

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(x+1)(x+3)(x+5)(x+7)$を展開したときの$x^2$の係数は?

千葉工業大学
この動画を見る 

福田の数学〜一橋大学2024年文系第5問〜円の中心を含む三角形になる確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $n$を3以上の奇数とする。円に内接する正$n$角形の頂点から無作為に相異なる3点を選んだ時、その3点を頂点とする三角形の内部に円の中心が含まれる確率$p_n$を求めよ。
この動画を見る 

一手間加えるだけで美味しい方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$x^2+\frac{100}{x^2+1}=19$
この動画を見る 

福田の数学〜一橋大学2024年文系第4問〜ひし形になる条件と面積の最小

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数$a$,$b$は-1<$a$<1, -1<$b$<1 を満たす。座標空間内に4点A($a$, -1, -1), B(-1, $b$, -1), C($-a$, 1, 1), D(1, $-b$, 1)をとる。
(1)A, B, C, Dがひし形の頂点となるとき、$a$と$b$の会計を表す等式を求めよ。
(2)$a$, $b$が(1)の等式を満たすとき、A, B, C, Dを頂点とする四角形の面積の最小値を求めよ。
この動画を見る 

これ全部わかる?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
①$1^0$

②$\sqrt[ 3 ]{ 27 }$

③$2^2$

④$7-1$

⑤$\sqrt{ 49 }$

⑥$2^3$

⑦$\sqrt{ 81 }$

⑧$5+5$

⑨$\sqrt{ 144 }$
この動画を見る 

大学入試問題#803「マジで気合い!」 #大阪市立大学(2000) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^4} dx$

出典:2000年大阪市立大学
この動画を見る 

式の値 名城大附属

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=2 \sqrt 2 - \sqrt 3$のとき
$x^4-22x^2=?$

名城大学附属高等学校
この動画を見る 

福田の数学〜一橋大学2024年文系第3問〜多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#剰余の定理・因数定理・組み立て除法と高次方程式#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)$は$x$に関する4次方程式で4次の係数は1である。$f(x)$は$(x+1)^2$で割ると1余り、$(x-1)^2$で割ると2余る。$f(x)$を求めよ。
この動画を見る 

福田のおもしろ数学123〜どうして積分すると面積が求まるのでしょう?

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$f(x)$は常に正の値をとる連続な増加関数とする。このとき$y$=$f(x)$のグラフと$x$軸、直線$x$=$a$, $x$=$b$で囲まれる部分の面積を$S$とすると$S$=$\displaystyle\int_a^bf(x)dx$であることを証明せよ。
この動画を見る 

大学入試問題#802「ほんまに解いてほしい良問」 #岡山大学(2002) #通過領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師: ますただ
問題文全文(内容文):
座標平面上に点$A(0,2)$と点$B(1,0)$があり線分$AB$上の点$P$から$x$軸、$y$軸におろした垂線の足をそれぞれ$Q,R$とする。
点$P$が$A$から$B$まで動くとき、線分$QR$の通過する部分の面積を求めよ。

出典:2002年岡山大学 入試問題
この動画を見る 

福田の数学〜一橋大学2024年文系第2問〜2つの放物線が共有点で接線直交する条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $a$, $b$を実数とする。曲線$C$:$y$=$x^2$ と曲線$C'$:$y$=$-x^2$+$ax$+$b$はある点を共有しており、その点におけるそれぞれの接線は直交している。$C$と$C'$で囲まれた部分の面積の最小値を求めよ。
この動画を見る 

【高校数学】2023年度 第1回 高2K塾記述模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
次の□にあてはまる数または式を求めよ.
(1)$(x^2+x)(x^2+x-3)$を展開すると、$\Box$となる.
(2)$2x^2-5xy-3y^2$を因数分解すると、$\Box$となる.
(3)$\alpha=3+\sqrt6、\beta=3-\sqrt6$について、$\alpha\beta$の値は$\Box$であり、$\Box$である.
(4)$\theta$は鋭角とする.$\tan\theta=\sqrt3$のとき、$\cos\theta=\Box$である.
(5)不等式$-x\lt 3x-4\lt x$の解は$\Box$である.
(6)次のデータがある。$6,3,5,2,2,7,1,4,8$ このデータの第3四分位数は$\Box$であり、四分位範囲は$\Box$である.

第2問[1]:図形と計量
三角形$ABC$があり、$AB=4,AC=5,\cos\angle BAC=\dfrac{1}{8}$である。
(1)$\sin\angle BAC$の値を求めよ。また、辺$BC$の長さを求めよ。
(2)辺$AC$(両端を除く)上に点$D$をとり、三角形$BCD$の外接円の半径を$R$とする。
(i)$\angle BDC=\theta$とおくとき、$\sin\theta$を$R$を用いて表せ.
(ii)$R=4$のとき、線分$BD$の長さと線分$AD$の長さを求めよ.

[2]:場合の数
1個のサイコロを4回振り、出た目の数を左から順に並べて4桁の整数Nを作る。例えば、1個のサイコロを4回振り、出た目の数が順に$1,2,3,4$である場合は$N=1234$となる。 
(1)$N$は全部で何個できるか.
(2)$2126,3335$のように、同じ数を含む$N$は何個できるか.
(3)$4321$より大きい$N$は何個できるか.

第3問:2次関数
$x$の2次関数$f(x)=x^2-2x+2$があり、放物線$y=f(x)$を$C_1$とする。
(1)(i)$C_1$の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$f(x)$の最大値と最小値を求めよ。
(2)$p$を正の整数とする。$C_1$を$x$軸の方向に$p$、$y$軸方向に$-p$だけ平行移動した放物線を$C_2$とし、$C_2$の方程式を$y=g(x)$とする。
(i)$C_2$の頂点の座標を求めよ。
(ii)$0\leqq x\leqq 4$における$g(x)$の最小値を$m$とする。$m$を$p$を用いて表せ。
(iii)次の2つの条件(A),(B)がともに成り立つような$p$の値の範囲を求めよ。
  (A)$0\leqq x\leqq 4$を満たすすべての実数$x$に$g(x)\gt 0$
(B)$0\leqq x\leqq 4$を満たすある実数xに対して$g(x)\gt 8$

第4問:複素数と方程式
$a,b$を実数の定数とし、$c$を0でない実数の定数とする。2つの2次方程式
$x^2-6x+10=0$ …①
$x^2-ax+b=0$ …②
があり、②の2つの解は$1+ci、1-ci$である。ただし、$i$は虚数単位である。
(1)①を解け。
(2)$a$の値を求めよ。また、$b$を$c$を用いて表せ。
(3)$d$を実数の定数とする。多項式$P(x)$があり、$P(x)$を2次式$x^2-ax+b=0$で割ると、商は $x^2-6x+10=0$、余りは$cx+d$である。
 (i)$P(1+ci)$を$p+qi$ ($p,q$は実数であり、いずれも$c,d$で表された式)の形で表せ。
 (ii)①の2つの解を$\alpha,\beta$と表し、複素数の集合$A,B$を
 $A={\alpha,\beta,1+ci,1-ci}、B={P(\alpha),P(\beta),P(1+ci),P(1-ci)}$
 と定める。$A=B$となるような$b,c,d$の組($b.c,d$)をすべて求めよ。ただし、$A=B$とは、$A$の要素と$B$の要素がすべて一致することである。

第5問:確率
1が書かれた赤色、白色、青色のカードが1枚ずつ、2が書かれた赤色、白色、青色のカードが1枚ずつ、3が書かれた赤色、白色、青色のカードが1枚ずつ、4が書かれた赤色、白色、青色のカードが1枚ずつ、計12枚のカードが袋の中に入っている。この袋から無作為に3枚のカードを同時に取り出す。
(1)取り出した3枚のカードに書かれた数がすべて同じ数である確率を求めよ。
(2)取り出した3枚のカードに書かれた数がすべて異なる数である確率を求めよ。
(3)取り出した3枚のカードに書かれた数の和が3の倍数である確率を求めよ。
(4)取り出した3枚のカードに書かれた数の和が3の倍数であるとき、その3枚のカードの中に赤色のカードが含まれている条件付き確率を求めよ。
この動画を見る 

福田のおもしろ数学122〜どれがどれですか?該当する関数を見つけてください

アイキャッチ画像
単元: #数Ⅱ#三角関数#指数関数と対数関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\begin{array}{|c|c|c|c|}
\hline
x & a & b & c\\ \hline
f_1(x) & 0.980 & 0.921 & 0.825 \\ \hline
f_2(x) & 0.063 & 0.251 & 0.565 \\ \hline
f_3(x) & 0.803 & 0.644 & 0.517 \\ \hline
f_4(x) & 0.199 & 0.389 & 0.565 \\ \hline
\end{array}$
上の数表において、$f_1(x)$, $f_2(x)$, $f_3(x)$, $f_4(x)$は関数
$\sin x$, $\cos x$, $\frac{\pi}{2}x^2$, $3^{-x}$
のうちのどれかである。どれがどれか?
ただし、$a$, $b$, $c$は0<$a$<$b$<$c$<$\frac{\pi}{2}$, $b$=$\frac{a+c}{2}$ を満たし、数値はどれも小数第4位を四捨五入してある。
この動画を見る 

約束記号 四天王寺

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学を数楽に
問題文全文(内容文):
$\langle\langle x \rangle\rangle=2x-1$とする
$\langle\langle \quad \langle\langle 2x \rangle\rangle -1 \rangle\rangle=x^2+10$
$x=?$

四天王寺高等学校
この動画を見る 
PAGE TOP