数学(高校生) - 質問解決D.B.(データベース) - Page 2

数学(高校生)

【数C】【空間ベクトル】平行六面体ABCD-EFGHにおいて、次の等式が成り立つことを示せ。(1) AG-BH=DF-CE(2) 3BH+2DF=2AG+3CE+2BC

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行六面体ABCD-EFGHにおいて、次の等式が成り立つことを示せ。
(1) AG-BH=DF-CE
(2) 3BH+2DF=2AG+3CE+2BC
この動画を見る 

【数B】【数列】1から8までの数字のさいころを繰り返し投げ、n回目までに出た数字の合計をX (n) とする。X (n) を3で割ったあまりが0,1,2をそれぞれ数列で置くとき、それぞれの一般項を求めよ

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
この動画を見る 

【数B】【数列】数列{an}の一般項を求めよ。(1)a1=1, a2=2, an+2+3an+1-4an=0(2)a1=0, a2=1, an+2+5an+1+6an=0他1問

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$の一般項を求めよ。
$a_1 = 1$,$a_2 = 2$
$a_{n+2} + 3a_{n+1} - 4a_n = 0$

$a_1 = 0$,$a_2 = 1$
$a_{n+2} + 5a_{n+1} + 6a_n = 0$

$a_1 = 1$, $a_2 = 4$
$a_{n+2} - 6a_{n+1} + 9a_n = 0$
この動画を見る 

【数B】【数列】条件a1=4, an+1=4an+8/an+6によって定められる数列{an}に対して、bn=an-2/an+4とおくと、数列{bn}は等比数列である。数列{an}の一般項を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_{1}=4$
$a_{n+1} = \dfrac{4a_n + 8}{a_n + 6}$
によって定められる数列$a_n$に対して、
$b_n = \dfrac{a_n - 2}{a_n + 4}$
とおくと、数列 $b_n$は等比数列である。
数列$a_n$の一般項を求めよ。
この動画を見る 

【数Ⅰ】【図形と計量】0°≦θ≦180°とする。次の不等式を満たすもの値の範囲を求めよ。-1<√3 tanθ <3 (他8問)

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。


$\sin\theta > \dfrac{1}{\sqrt{2}}$

$\sin\theta \leq \dfrac{1}{2}$

$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$

$\cos\theta < -\dfrac{1}{\sqrt{2}}$

$0 < \tan\theta \leq 1$

$\tan\theta \geq \sqrt{3}$

$1 < 2\sin\theta \leq \sqrt{3}$

$1 \leq -2\cos\theta < \sqrt{3}$

$-1 < \sqrt{3}\tan\theta < 3$
この動画を見る 

【数Ⅰ】【図形と計量】sinθ+cosθ=1/3のとき(1) sinθcosθの値(2) sin³θ+cos³θの値(3) sinθ-cosθの値

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
sinθ+cosθ=1/3のとき
(1) sinθcosθの値
(2) sin³θ+cos³θの値
(3) sinθ-cosθの値
この動画を見る 

【数Ⅰ】【図形と計量】(1)cos36°を求めよ(2)正五角形の対角線の長さを求めよ。

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)cos36°を求めよ
(2)正五角形の対角線の長さを求めよ。
この動画を見る 

【数B】【数列】nは自然数とする。連立不等式0≦x≦n, y≧0, y≦n²-x²の表す領域に含まれる格子点の個数を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とする。連立不等式0≦x≦n, y≧0, y≦n²-x²の表す領域に含まれる格子点の個数を求めよ。
この動画を見る 

【数B】【数列】nは自然数とする。座標平面上の3点(0,0),(3n,0)(0,n)を頂点とする三角形の周および内部にある格子点の個数を求めよ。

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とする。座標平面上の3点(0,0),(3n,0)(0,n)を頂点とする三角形の周および内部にある格子点の個数を求めよ。
この動画を見る 

【数B】【数列】(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。(1)xのn-1乗の係数(2)xのn-2乗の係数(n≧2)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。
(1)xのn-1乗の係数
(2)xのn-2乗の係数(n≧2)
この動画を見る 

【数Ⅰ】【2次関数】不等式 x²+9x+18<0 を満たすすべてのxが不等式 x²-4ax+3a<0 を満たすような定数a の値の範囲を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
不等式 x²+9x+18<0 を満たすすべてのxが不等式 x²-4ax+3a<0 を満たすような定数a の値の範囲を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】(1) y=|x²+2x|のグラフを描け。(2) |x²+2x|=k の実数解の個数を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
この動画を見る 

【数Ⅰ】【2次関数】グラフを利用して、次の不等式を解け。(1) |x+1|<2x (2) |x²-4| >-3x

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
グラフを利用して、次の不等式を解け。
(1) |x+1|<2x
(2) |x²-4| >-3x
この動画を見る 

【数Ⅰ】【2次関数】x,yがお互いに関係なく変化するとき、Z=x²ー6xy+y²+2yの最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
x,yがお互いに関係なく変化するとき、Z=x²ー6xy+y²+2yの最小値を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
x²+y²=1 のときx²ーy²+2xの最大値と最小値を求めよ。
この動画を見る 

【数Ⅰ】【データの分析】672、693、644、665、630、644でc=7、x₀=644、u=(x-x₀)/c として新たな変量uを作る。変量uとxの平均値、分散、標準偏差を求めよ。

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量xのデータが次のように与えられている。
672,693、644、665、630、644
c=7、x₀=644、u=(x-x₀)/c として新たな変量uを作る。
(1)変量uのデータの平均値、分散、標準偏差を求めよ。
(2)変量xのデータの平均値、分散、標準偏差を求めよ。
この動画を見る 

【数Ⅰ】【データの分析】あるクラスの生徒を対象に100点満点の試験を行ったところ、平均値は68点、分散は36であった。生徒全員の得点を2.5倍して、30点を加えたとき、平均値、分散、標準偏差を求めよ。

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
あるクラスの生徒を対象に100点満点の試験を行ったところ、平均値は68点、分散は36であった。得点調整のため、生徒全員の得点を2.5倍して、更に30点を加えたとき、得点調整後の平均値、分散、標準偏差を求めよ。
この動画を見る 

【数Ⅰ】【データの分析】変量Xのデータの平均値xが35、分散Sx²が16で新しい変量Yのデータについて、平均値y、分散Sy²、標準偏差Syを求めよ(1)y=x-10(2)y=3x(3)y=-x/2+6

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#データの分析#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
変量Xのデータの平均値xが35、分散Sx²が16であるとする。
このとき、次の式によってえられる新しい変量Yのデータについて、平均値y、分散Sy²、標準偏差Syを求めよ。
(1)y=x-10
(2)y=3x
(3)y=-x/2+6
この動画を見る 

【数Ⅰ】【2次関数】次の条件を満たすような定数a の値の範囲を求めよ。(1) 二次方程式 2x²-3x+a=0 の1つの解が 0<x<1 の範囲にあり、他の解が 0<x<1 の範囲にある。他1問

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような定数a の値の範囲を求めよ。
(1) 二次方程式 2x²-3x+a=0 の1つの解が 0<x<1 の範囲にあり、他の解が 0<x<1 の範囲にある。
(2) 二次方程式 2ax²-(a+2)x-5=0 の1つの解が -1<x<0 の範囲にあり、他の解が 2<x<3 の範囲にある。ただし a>0 とする。
この動画を見る 

【数Ⅰ】【2次関数】a<b<c のとき(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0の2つの解のうち1つは a<x<b の範囲にありもう1つは b<x<c の範囲にあることを示せ

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
この動画を見る 

【数Ⅰ】【2次関数】放物線 y=x²-4x+2 と直瀬 y=2x+k が接するとき、定数k の値を求めよ。またそのときの接点の座標を求めよ。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 y=x²-4x+2 と直瀬 y=2x+k が接するとき、定数k の値を求めよ。またそのときの接点の座標を求めよ。
この動画を見る 

【数Ⅰ】【2次関数】放物線 y=x² と直線 y=-2x+k の共有点の個数は定数k の値によりどのように変化するか。

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 y=x² と直線 y=-2x+k の共有点の個数は定数k の値によりどのように変化するか。
この動画を見る 

【数Ⅰ】【2次関数】次の関数に最大値・最小値があればそれを求めよ。(1) y=-2x⁴+4x²+3(2) y=(x²-2x)²+4(x²-2x)-1

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数に最大値・最小値があればそれを求めよ。
(1) y=-2x⁴+4x²+3
(2) y=(x²-2x)²+4(x²-2x)-1
この動画を見る 

【30点UP】共通テスト本番で使える時短テクニック、3分で教えます

アイキャッチ画像
単元: #その他#英語(高校生)#勉強法・その他#勉強法#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
この動画を見る 

【数C】【空間ベクトル】四面体OABCの辺OA,OB,OCを1:1,2:1,3:1に内分する点を、P,Q,Rとする。点Cと重心Gを通る直線が平面OABと交わる点をHとする。OHをa、bを用いて表せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの辺OA,OB,OCをそれぞれ1:1,2:1,3:1に内分する点を、順にP,Q,Rとする。点Cと△PQRの重心Gを通る直線が平面OABと交わる点をHとする。OA=a、OB=bとするとき、OHをa、bを用いて表せ。
この動画を見る 

ギリ使いそうなテクニック3選

アイキャッチ画像
単元: #算数(中学受験)#その他#その他#その他#その他#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
計算の手間を省くテクニックを紹介します。
この動画を見る 

【数C】【空間ベクトル】四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHとすると、OH:OG=3:4であることを示せ
この動画を見る 

【高校数学】階差数列の漸化式~分かりやすく~ 3-17【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

【数C】【空間ベクトル】四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OPをa、b、cを用いて表せ

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCの辺OAの中点をM,辺BCを2:1に内分する点をQ、線分MQの中点をRとし、直線ORと平面ABCの交点をPとする。OA=a、OB=b、OC=cとするとき、OPをa、b、cを用いて表せ
この動画を見る 
PAGE TOP