数学(高校生)
数学(高校生)
【数C】【空間ベクトル】(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に垂線OHを下ろす。点Hの座標と線分OHの長さを求めよ。他1問

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に、原点Oから垂線OHを下ろす。このとき、点Hの座標と線分OHの長さを求めよ。
(2) 2点A(0.-2,-3)、B(8,4,7)を通る直線に、点P(3,-1,4)から垂線PHを下ろす。このとき、点Hの座標と線分PHの長さを求めよ
この動画を見る
(1) 2点A(5,-2,-3)、B(8,0,-4)を通る直線に、原点Oから垂線OHを下ろす。このとき、点Hの座標と線分OHの長さを求めよ。
(2) 2点A(0.-2,-3)、B(8,4,7)を通る直線に、点P(3,-1,4)から垂線PHを下ろす。このとき、点Hの座標と線分PHの長さを求めよ
計算しないで答えを出せ!奈良教育大

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m, n$は自然数、$m$は定数
$S(n)=1+2+3+...+mn$
$T(n)=S(n)-(1~mn間のmの倍数の和)$
$\displaystyle \lim_{ n \to \infty } \frac {T(n)}{S(n)}$
この動画を見る
$m, n$は自然数、$m$は定数
$S(n)=1+2+3+...+mn$
$T(n)=S(n)-(1~mn間のmの倍数の和)$
$\displaystyle \lim_{ n \to \infty } \frac {T(n)}{S(n)}$
【数C】【空間ベクトル】四面体OABCにおいて、OA=OB、→OC⊥→ABとする。(1) AC=BCであることを証明せよ(2) 三角形ABCの重心をGとするとき、→OG⊥→ABであることを証明せよ

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、OA=OB、
OC⊥ABとする。
(1) AC=BCであることを証明せよ
(2) 三角形ABCの重心をGとするとき、OG⊥ABであることを証明せよ
この動画を見る
四面体OABCにおいて、OA=OB、
OC⊥ABとする。
(1) AC=BCであることを証明せよ
(2) 三角形ABCの重心をGとするとき、OG⊥ABであることを証明せよ
【数C】【空間ベクトル】四面体ABCDにおいて、次のことを証明せよ。(1) →AB・→AC=→AC・→AD=→AD・→AB(2) AB⊥CD

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
正四面体 $\mathrm{ABCD}$ において、次のことを証明せよ。
(1) $\vec{\mathrm{AB}}\cdot\vec{\mathrm{AC}} = \vec{\mathrm{AC}}\cdot\vec{\mathrm{AD}} = \vec{\mathrm{AD}}\cdot\vec{\mathrm{AB}}$
(2) $\mathrm{AB}\perp\mathrm{CD}$
この動画を見る
正四面体 $\mathrm{ABCD}$ において、次のことを証明せよ。
(1) $\vec{\mathrm{AB}}\cdot\vec{\mathrm{AC}} = \vec{\mathrm{AC}}\cdot\vec{\mathrm{AD}} = \vec{\mathrm{AD}}\cdot\vec{\mathrm{AB}}$
(2) $\mathrm{AB}\perp\mathrm{CD}$
これなにが間違い?

単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$(a+b)^2$のどこが間違いか解説していきます。
この動画を見る
$(a+b)^2$のどこが間違いか解説していきます。
【数C】【空間ベクトル】a,bはベクトルとする。a=(3,4,0)とb=(0,x,-√7)のなす角が45°であるとき,xの値を求めよ。

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\vec{a}=(3, \, 4, \, 0)$ と $\vec{b}=(0, \, x, \, -\sqrt{7})$ のなす角が $45^{\circ}$ であるとき、$x$ の値を求めよ。
この動画を見る
$\vec{a}=(3, \, 4, \, 0)$ と $\vec{b}=(0, \, x, \, -\sqrt{7})$ のなす角が $45^{\circ}$ であるとき、$x$ の値を求めよ。
【数C】【空間ベクトル】4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。
この動画を見る
4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。
【数C】【空間ベクトル】a=(1,-1,-3)、b=(2,2,1)、c=(-1,-1,0)とする。|a+xb+yc|を最小にする実数x,yの値を求めよ。

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,b,cをベクトルとする。a=(1,-1,-3)、b=(2,2,1)、c=(-1,-1,0)とする。|a+xb+yc|を最小にする実数x,yの値を求めよ。
この動画を見る
a,b,cをベクトルとする。a=(1,-1,-3)、b=(2,2,1)、c=(-1,-1,0)とする。|a+xb+yc|を最小にする実数x,yの値を求めよ。
【数C】【空間ベクトル】a=(0,1,2)、b=(2,4,6)とする。x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,b,xをベクトルとする。
a=(0,1,2)、b=(2,4,6)とする。
x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。
この動画を見る
a,b,xをベクトルとする。
a=(0,1,2)、b=(2,4,6)とする。
x=a+tb(tは実数)について、|x|の最小値を求めよ。また、その時のxを成分表示せよ。
【数C】【空間ベクトル】平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。
この動画を見る
平行四辺形の3つの頂点がA(3,0,-4)、B(-2,5,-1)、C(4,3,2)のとき、第4の頂点の座標を求めよ。
【数C】【空間ベクトル】平行六面体ABCD-EFGHにおいて、次の等式が成り立つことを示せ。(1) AG-BH=DF-CE(2) 3BH+2DF=2AG+3CE+2BC

単元:
#空間ベクトル#空間ベクトル#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師:
理数個別チャンネル
問題文全文(内容文):
平行六面体ABCD-EFGHにおいて、次の等式が成り立つことを示せ。
(1) AG-BH=DF-CE
(2) 3BH+2DF=2AG+3CE+2BC
この動画を見る
平行六面体ABCD-EFGHにおいて、次の等式が成り立つことを示せ。
(1) AG-BH=DF-CE
(2) 3BH+2DF=2AG+3CE+2BC
【数B】【数列】1から8までの数字のさいころを繰り返し投げ、n回目までに出た数字の合計をX (n) とする。X (n) を3で割ったあまりが0,1,2をそれぞれ数列で置くとき、それぞれの一般項を求めよ

単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
この動画を見る
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
【数B】【数列】数列{an}の一般項を求めよ。(1)a1=1, a2=2, an+2+3an+1-4an=0(2)a1=0, a2=1, an+2+5an+1+6an=0他1問

単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$の一般項を求めよ。
$a_1 = 1$,$a_2 = 2$
$a_{n+2} + 3a_{n+1} - 4a_n = 0$
$a_1 = 0$,$a_2 = 1$
$a_{n+2} + 5a_{n+1} + 6a_n = 0$
$a_1 = 1$, $a_2 = 4$
$a_{n+2} - 6a_{n+1} + 9a_n = 0$
この動画を見る
次の条件によって定められる数列$a_n$の一般項を求めよ。
$a_1 = 1$,$a_2 = 2$
$a_{n+2} + 3a_{n+1} - 4a_n = 0$
$a_1 = 0$,$a_2 = 1$
$a_{n+2} + 5a_{n+1} + 6a_n = 0$
$a_1 = 1$, $a_2 = 4$
$a_{n+2} - 6a_{n+1} + 9a_n = 0$
【数B】【数列】条件a1=4, an+1=4an+8/an+6によって定められる数列{an}に対して、bn=an-2/an+4とおくと、数列{bn}は等比数列である。数列{an}の一般項を求めよ。

単元:
#数列#漸化式#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
$a_{1}=4$
$a_{n+1} = \dfrac{4a_n + 8}{a_n + 6}$
によって定められる数列$a_n$に対して、
$b_n = \dfrac{a_n - 2}{a_n + 4}$
とおくと、数列 $b_n$は等比数列である。
数列$a_n$の一般項を求めよ。
この動画を見る
$a_{1}=4$
$a_{n+1} = \dfrac{4a_n + 8}{a_n + 6}$
によって定められる数列$a_n$に対して、
$b_n = \dfrac{a_n - 2}{a_n + 4}$
とおくと、数列 $b_n$は等比数列である。
数列$a_n$の一般項を求めよ。
【数Ⅰ】【図形と計量】0°≦θ≦180°とする。次の不等式を満たすもの値の範囲を求めよ。-1<√3 tanθ <3 (他8問)

単元:
#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。
$\sin\theta > \dfrac{1}{\sqrt{2}}$
$\sin\theta \leq \dfrac{1}{2}$
$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$
$\cos\theta < -\dfrac{1}{\sqrt{2}}$
$0 < \tan\theta \leq 1$
$\tan\theta \geq \sqrt{3}$
$1 < 2\sin\theta \leq \sqrt{3}$
$1 \leq -2\cos\theta < \sqrt{3}$
$-1 < \sqrt{3}\tan\theta < 3$
この動画を見る
$0^\circ \leq \theta \leq 180^\circ$とする。
次の不等式を満たす$\theta$ の値の範囲を求めよ。
$\sin\theta > \dfrac{1}{\sqrt{2}}$
$\sin\theta \leq \dfrac{1}{2}$
$\cos\theta \leq -\dfrac{\sqrt{3}}{2}$
$\cos\theta < -\dfrac{1}{\sqrt{2}}$
$0 < \tan\theta \leq 1$
$\tan\theta \geq \sqrt{3}$
$1 < 2\sin\theta \leq \sqrt{3}$
$1 \leq -2\cos\theta < \sqrt{3}$
$-1 < \sqrt{3}\tan\theta < 3$
【数Ⅰ】【図形と計量】sinθ+cosθ=1/3のとき(1) sinθcosθの値(2) sin³θ+cos³θの値(3) sinθ-cosθの値

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
sinθ+cosθ=1/3のとき
(1) sinθcosθの値
(2) sin³θ+cos³θの値
(3) sinθ-cosθの値
この動画を見る
sinθ+cosθ=1/3のとき
(1) sinθcosθの値
(2) sin³θ+cos³θの値
(3) sinθ-cosθの値
【高校数学】隣接三項間の漸化式の特性方程式の意味~分かりやすく丁寧に~ 3-19.5【数学B】

【数Ⅰ】【図形と計量】(1)cos36°を求めよ(2)正五角形の対角線の長さを求めよ。

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)cos36°を求めよ
(2)正五角形の対角線の長さを求めよ。
この動画を見る
(1)cos36°を求めよ
(2)正五角形の対角線の長さを求めよ。
【数B】【数列】nは自然数とする。連立不等式0≦x≦n, y≧0, y≦n²-x²の表す領域に含まれる格子点の個数を求めよ。

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
nは自然数とする。連立不等式0≦x≦n, y≧0, y≦n²-x²の表す領域に含まれる格子点の個数を求めよ。
この動画を見る
nは自然数とする。連立不等式0≦x≦n, y≧0, y≦n²-x²の表す領域に含まれる格子点の個数を求めよ。
【数B】【数列】nは自然数とする。座標平面上の3点(0,0),(3n,0)(0,n)を頂点とする三角形の周および内部にある格子点の個数を求めよ。

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
nは自然数とする。座標平面上の3点(0,0),(3n,0)(0,n)を頂点とする三角形の周および内部にある格子点の個数を求めよ。
この動画を見る
nは自然数とする。座標平面上の3点(0,0),(3n,0)(0,n)を頂点とする三角形の周および内部にある格子点の個数を求めよ。
【数B】【数列】(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。(1)xのn-1乗の係数(2)xのn-2乗の係数(n≧2)

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師:
理数個別チャンネル
問題文全文(内容文):
(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。
(1)xのn-1乗の係数
(2)xのn-2乗の係数(n≧2)
この動画を見る
(x+1)(x+2)(x+3)……(x+n)の展開式において、次の係数を求めよ。
(1)xのn-1乗の係数
(2)xのn-2乗の係数(n≧2)
【高校数学】隣接3項間の漸化式~解き方を覚えよう~ 3-19【数学B】

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
問題1 数列$\{an\}$の一般項を求めよ。
$a_{1} = 0, a_{2} = 1 ,a_{n+2}-5a_{n+1}+6a_n=0$
問題2 次のように定義される$\{an\}$の一般項$a_n$を求めよ。
$a_1=1,a_2=2,a_{n+2}-2a_{n+1}-15a_n=0$
この動画を見る
問題1 数列$\{an\}$の一般項を求めよ。
$a_{1} = 0, a_{2} = 1 ,a_{n+2}-5a_{n+1}+6a_n=0$
問題2 次のように定義される$\{an\}$の一般項$a_n$を求めよ。
$a_1=1,a_2=2,a_{n+2}-2a_{n+1}-15a_n=0$
このタイプの2次方程式の解き方は?

【数Ⅰ】【2次関数】不等式 x²+9x+18<0 を満たすすべてのxが不等式 x²-4ax+3a<0 を満たすような定数a の値の範囲を求めよ。

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
不等式 x²+9x+18<0 を満たすすべてのxが不等式 x²-4ax+3a<0 を満たすような定数a の値の範囲を求めよ。
この動画を見る
不等式 x²+9x+18<0 を満たすすべてのxが不等式 x²-4ax+3a<0 を満たすような定数a の値の範囲を求めよ。
【数Ⅰ】【2次関数】aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。

単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。
この動画を見る
aは正の定数とする。y=|x²-2x|(0≦x≦a)の最大値を求めよ。
√5の小数部分は?

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt5$の小数部分は?
この動画を見る
$\sqrt5$の小数部分は?
【高校数学】漸化式で特性方程式を使う理由 3-18.5【数学B】

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#数学(高校生)#数B
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
【高校数学】漸化式で特性方程式を使う理由を解説していきます。
この動画を見る
【高校数学】漸化式で特性方程式を使う理由を解説していきます。
【数Ⅰ】【2次関数】(1) y=|x²+2x|のグラフを描け。(2) |x²+2x|=k の実数解の個数を求めよ。

三角って実はすごい図形?

単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
トラス構造などの解説をしていきます。
この動画を見る
トラス構造などの解説をしていきます。
これの何が間違い?

