数学(高校生)
【数Ⅱ】複素数と方程式:3次方程式が異なる3つの解を持つ条件:方程式x³+(a-1)x-a=0が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
この動画を見る
方程式$x^3+(a-1)x-a=0$が異なる3つの実数解をもつとき、定数aの値の範囲を求めよ。
【数Ⅱ】複素数と方程式:3次方程式が2重解を持つ条件:x³+6x²+ax+b=0が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材:
#ニュースコープ#ニュースコープ数学Ⅱ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$x^3+6x^2+ax+b=0$が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
この動画を見る
$x^3+6x^2+ax+b=0$が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
【高校数学】組合わせ~順列との違いを明確に~ 1-10【数学A】
三項間漸化式(応用)高知大
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.
高知大過去問
この動画を見る
$a_1=18,a_2=48$である.
$a_{n+2}-5a_{n+1}+6a_n=2n^2$,一般項$a_n$を求めよ.
高知大過去問
【数Ⅰ】数と式:絶対値の外し方のルールを分かりやすく教えます!!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
絶対値を外すとき、中身が負ならマイナスを取るって思っていませんか?それは危険です!!この動画を見れば文字が来ても大丈夫!もう符号ミスはしない!!
この動画を見る
絶対値を外すとき、中身が負ならマイナスを取るって思っていませんか?それは危険です!!この動画を見れば文字が来ても大丈夫!もう符号ミスはしない!!
【数Ⅰ】数と式:√の外し方のルールを分かりやすく教えます!!
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$\sqrt{a^2}$の$\sqrt{}$を外したa??2乗だったらただ√が取れると思っていませんか??この動画を見れば、文字があっても正しく√を外せるようになりますよ!!
この動画を見る
$\sqrt{a^2}$の$\sqrt{}$を外したa??2乗だったらただ√が取れると思っていませんか??この動画を見れば、文字があっても正しく√を外せるようになりますよ!!
ガチャ確率1% 100回以内に当たる確率 数学的に考えるギャンブラーの誤謬
複素数の5次方程式
単元:
#数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.($\sin,\cos$は使わない)
$x^5=i$
この動画を見る
これを解け.($\sin,\cos$は使わない)
$x^5=i$
【数学Ⅰ】因数分解まとめ(誰でも嫌でも解けるステップ)→覚えやすさ重視の解説
単元:
#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅰ】因数分解まとめ動画です
-----------------
問1 $4a^2-9b^2$
問2 $8x^3+12x^2y+6xy^2+y^3$
問3 $64a^3+27b^3$
この動画を見る
【数学Ⅰ】因数分解まとめ動画です
-----------------
問1 $4a^2-9b^2$
問2 $8x^3+12x^2y+6xy^2+y^3$
問3 $64a^3+27b^3$
複素数 慈恵医大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.
(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.
2004慈恵医大過去問
この動画を見る
$\theta=\dfrac{2}{9}\pi$
$\alpha=\cos\theta+i\sin\theta$
$\beta=\alpha+\alpha^8$である.
(1)$\beta$は実数であることを示せ.
(2)$\beta$を解にもつ整数係数の3次方程式を求めよ.
(3)(2)の3次方程式は有理数解をもたないことを示せ.
2004慈恵医大過去問
複素数 福井大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha^3=-4+\sqrt{11}i$,$c=\alpha+\overline{\alpha}$である.
(1)$\vert \alpha \vert$の値を求めよ.
(2)$c^3-9c$の値を求めよ.
(3)$c$の値を求めよ.
1999福井大過去問
この動画を見る
$\alpha^3=-4+\sqrt{11}i$,$c=\alpha+\overline{\alpha}$である.
(1)$\vert \alpha \vert$の値を求めよ.
(2)$c^3-9c$の値を求めよ.
(3)$c$の値を求めよ.
1999福井大過去問
【高校数学】1次不等式~図も理解しましょう~ 1-11【数学Ⅰ】
複素数 日本大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$,$\displaystyle \sum_{n=1}^{23}z^n$
2000日大過去問
この動画を見る
これを解け.
$z=\dfrac{\sqrt6+\sqrt2}{4}+\dfrac{\sqrt6-\sqrt2}{4}i$,$\displaystyle \sum_{n=1}^{23}z^n$
2000日大過去問
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m^2+615=2^n$である,自然数$m,n$を求めよ.
この動画を見る
$m^2+615=2^n$である,自然数$m,n$を求めよ.
【高校数学】2重根号~この動画で十分です~ 1-10【数学Ⅰ】
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
2重根号 解説動画です
この動画を見る
2重根号 解説動画です
【高校数学】根号~復習から発展まで~ 1-9【数学Ⅰ】
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
根号 復習から発展までの説明動画です
この動画を見る
根号 復習から発展までの説明動画です
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^8-6n^4+10$が素数となる整数$n$をすべて求めよ.
この動画を見る
$n^8-6n^4+10$が素数となる整数$n$をすべて求めよ.
整数問題 千葉大(類)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$N!$の下8桁は0で下9桁に初めて0以外の数が現れる.
最小の$N$とそのときの9桁目の数を求めよ.
千葉大(類)過去問
この動画を見る
$N!$の下8桁は0で下9桁に初めて0以外の数が現れる.
最小の$N$とそのときの9桁目の数を求めよ.
千葉大(類)過去問
漸化式 香川大(医)
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-4x+1=0$の解を$\alpha,\beta(\alpha \gt \beta)$とする.
(1)$\alpha^n+\beta^m$は偶数であることを示せ.
(2)$[\alpha^n]$は奇数であることを示せ.
2018香川(医)過去問
この動画を見る
$x^2-4x+1=0$の解を$\alpha,\beta(\alpha \gt \beta)$とする.
(1)$\alpha^n+\beta^m$は偶数であることを示せ.
(2)$[\alpha^n]$は奇数であることを示せ.
2018香川(医)過去問
複素数 広島大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.
1966広島大過去問
この動画を見る
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.
1966広島大過去問
東大卒の僕が実際にやっていた数学の勉強法【結局解法暗記って何?】
19神奈川県教員採用試験(数学:整数問題)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#その他
指導講師:
ますただ
問題文全文(内容文):
$x,y \leftarrow in$
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6},x+y$の最大値を求めよ.
19神奈川県教員採用試験(数学:整数問題)過去問
この動画を見る
$x,y \leftarrow in$
$\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6},x+y$の最大値を求めよ.
19神奈川県教員採用試験(数学:整数問題)過去問
19神奈川県教員採用試験(数学:面積の最小値)
単元:
#数Ⅱ#微分法と積分法#面積、体積#その他#数学(高校生)#その他
指導講師:
ますただ
問題文全文(内容文):
$y=x^2-5x+4$と$y=m(n-2)$で囲まれた面積の最小値とそのときの$m$の値を求めよ.
19神奈川県教員採用試験(数学:面積の最小値)過去問
この動画を見る
$y=x^2-5x+4$と$y=m(n-2)$で囲まれた面積の最小値とそのときの$m$の値を求めよ.
19神奈川県教員採用試験(数学:面積の最小値)過去問
【数学】以上・以下,未満・より大きいの違いが一瞬でわかる魔法の言葉
19神奈川県教員採用試験(数学:三角形の最小値)
単元:
#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#その他#数学(高校生)#その他
指導講師:
ますただ
問題文全文(内容文):
$y=x^2+2$上の点$P$と原点$O$と点$A(3,3)$で$\triangle OAP$の面積の最小値を求めよ.
19神奈川県教員採用試験(数学:三角形の最小値)過去問
この動画を見る
$y=x^2+2$上の点$P$と原点$O$と点$A(3,3)$で$\triangle OAP$の面積の最小値を求めよ.
19神奈川県教員採用試験(数学:三角形の最小値)過去問
【高校数学】重複順列をどこよりも丁寧に解説~苦手集合~ 1-9【数学A】
整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\vert (n-1)(n-3)(n-4)(n^6)+5 \vert$が素数となる整数$n$を求めよ.
この動画を見る
$\vert (n-1)(n-3)(n-4)(n^6)+5 \vert$が素数となる整数$n$を求めよ.
【高校数学】3分でじゅず順列~例題付き~ 1-8【数学A】
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
色の異なる6個の玉を糸につないで首飾りにする方法は何通りあるか。
色の異なる7個の玉をつないで輪を作る方法は何通りあるか。
もし、円形に並べる方法なら何通りあるか。
この動画を見る
色の異なる6個の玉を糸につないで首飾りにする方法は何通りあるか。
色の異なる7個の玉をつないで輪を作る方法は何通りあるか。
もし、円形に並べる方法なら何通りあるか。
【高校数学】絶対値~中学の感覚のままでは危険です~ 1-8 【数学Ⅰ】
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値の説明動画です
この動画を見る
絶対値の説明動画です
三角関数の基本 合成公式 図書館情報大
単元:
#数Ⅱ#三角関数#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt3\sin 2x+2\sin^2x-1$,$0\leqq x\lt \pi$における最大値,最小値を求めよ.
1985図書館情報大過去問
この動画を見る
$\sqrt3\sin 2x+2\sin^2x-1$,$0\leqq x\lt \pi$における最大値,最小値を求めよ.
1985図書館情報大過去問