数学(高校生)
【高校数学】集合の要素の個数~大切なのは公式ではなく理解~ 1-4【数学A】
数列 千葉大
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
これを解け.
$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$
1979千葉大過去問
この動画を見る
これを解け.
$\displaystyle \sum_{k=1}^n \dfrac{5k+4}{k(k+1)(k+2)}$
1979千葉大過去問
【高校数学】有理数と無理数~循環小数とか実数とかの違い~ 1-6【数学Ⅰ】
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
有理数と無理数 循環小数や実数の違いについての説明動画です
この動画を見る
有理数と無理数 循環小数や実数の違いについての説明動画です
数列 大阪大
単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.
1979大阪大過去問
この動画を見る
$n$は自然数であり,$a_n=2^n,b_n=3n+2$とする.
数列${a_n}$の項のうち数列${b_n}$の項でもあるものを小さい順に並べた数列${C_n}$を求めよ.
1979大阪大過去問
ユークリッドの互除法、死ぬほど覚えられない人へ。急ぎの人は【4:26まで】見て。(筆算の「形」を絵描き歌で覚えるのが一番早いし忘れない)【数学
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
ユークリッドの互除法についての解説動画です
767と921の最大公約数は?
この動画を見る
ユークリッドの互除法についての解説動画です
767と921の最大公約数は?
対数 札幌医科大
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.
2019札幌医大過去問
この動画を見る
①$2^n$が4桁となる自然数を求めよ.
②$5^{130}$は何桁か.
2019札幌医大過去問
【高校数学】集合の基礎例題2題~苦手な人は一緒に解こう~ 1-3.5【数学A】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。
このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}
(1)$A \cap B$={6,12}
(2)$A \cup B$={2,3,4,6,8,9,10,12}
(3)$\overline{ A }$={1,3,5,7,9,11}
(4)$\overline{ B }$={1,2,4,5,7,8,10,11}
(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}
(6)$\overline{ A }$$\cap B$={3,9}
(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}
(8)$\overline{ A \cup B }$={1,5,7,11}
-----------------
全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。
(1)$A \cup B$={2,3,5,6,7,9}
(2)$A$={2,3,5,7}
(3)$B$={3,6,9}
この動画を見る
1から12までの自然数全体の集合を全体集合とし、2の倍数全体の集合をA、
3の倍数全体の集合をBとする。
このとき、次の集合を求めよ。
U={1,2,3,4,5,6,7,8,9,10,11,12}, A={2,4,6,8,10,12}, B={3,6,9,12}
(1)$A \cap B$={6,12}
(2)$A \cup B$={2,3,4,6,8,9,10,12}
(3)$\overline{ A }$={1,3,5,7,9,11}
(4)$\overline{ B }$={1,2,4,5,7,8,10,11}
(5)$\overline{ A }$$\cap$$\overline{ B }$={1,5,7,11}
(6)$\overline{ A }$$\cap B$={3,9}
(7)$A \cup$$\overline{ B }$={1,2,4,5,6,7,8,10,11,12}
(8)$\overline{ A \cup B }$={1,5,7,11}
-----------------
全体集合$ U $={1,2,3,4,5,6,7,8,9}の部分集合$ A,B $について、
$\overline{ A } \cap \overline{ B }$={1,4,8}, $\overline{ A } \cap B $={6,9}, $ A \cap \overline{ B } $={2,5,7}のとき、次の集合を求めよ。
(1)$A \cup B$={2,3,5,6,7,9}
(2)$A$={2,3,5,7}
(3)$B$={3,6,9}
数1
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$(m,n)$を求めよ.
①$m^2-n^2-2n=21$
②$m^3+n^3-3mn=3$
この動画を見る
$m,n$は自然数である.
$(m,n)$を求めよ.
①$m^2-n^2-2n=21$
②$m^3+n^3-3mn=3$
最小公倍数 整数
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n,A,B$を自然数とする.
$A$と$B(1\leqq A\lt B)$の最小公倍数は$10^n$である.
$(A,B)$の組数を求めよ.
この動画を見る
$n,A,B$を自然数とする.
$A$と$B(1\leqq A\lt B)$の最小公倍数は$10^n$である.
$(A,B)$の組数を求めよ.
確率 漸化式
【高校数学】補集合とド・モルガンの法則~言葉の意味を正しく理解~ 1-3【数学A】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
補集合とド・モルガンの法則の説明動画です
この動画を見る
補集合とド・モルガンの法則の説明動画です
整数問題 合同式
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$7^m-1032=n^2$,自然数$(m,n)$をすべて求めよ.
この動画を見る
$7^m-1032=n^2$,自然数$(m,n)$をすべて求めよ.
【新高3・浪人生必見】数学を一年かけて爆上がりさせる勉強法【高校数学】
【数Ⅰ】データの分析:平均値・仮平均について解説!仮平均を利用して簡単に計算しよう!
【数Ⅰ】データの分析:中央値について解説!
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)152,153,148,142,156の中央値は?
(2)160,152,153,148,142,156の中央値は?
この動画を見る
(1)152,153,148,142,156の中央値は?
(2)160,152,153,148,142,156の中央値は?
整数 九州大
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを示せ.
2014九州大過去問
この動画を見る
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを示せ.
2014九州大過去問
式の値
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
この動画を見る
$x^4+x^3+x^2+x+1=0$を満たすとき,
$(x^{2019}+x^{2018}+x^{2017}+1)^{5n}+$
$(x^{2019}+x^{2018}+x^{2016}+1)^{5n-5}$の値を求めよ.
【高校数学】共通部分と和集合~⋂と⋃の記号のイメージ授けます~ 1-2【数学A】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通部分と和集合の説明動画です
この動画を見る
共通部分と和集合の説明動画です
複素数の3次方程式
【高校数学】集合と部分集合~記号の意味を理解しようぜ~ 1-1【数学A 】
単元:
#数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
集合と部分集合説明動画です
この動画を見る
集合と部分集合説明動画です
N進法 整数問題
単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
7進法で表された8桁の数$A123456B$が4の倍数となる$(A,B)$の組をすべて求めよ.
この動画を見る
7進法で表された8桁の数$A123456B$が4の倍数となる$(A,B)$の組をすべて求めよ.
複素数の計算 群馬大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ
(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.
群馬大過去問
この動画を見る
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ
(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.
群馬大過去問
【高校数学】部分分数分解の分母に二乗があるパターン
単元:
#恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師:
受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る
部分分数分解の分母に二乗がある場合の解説動画です
【数学】確率 反復試行~「同時」「順番」の違いとは?
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】確率 反復試行「同時」「順番」の違い解説動画です
-----------------
(1)3個のサイコロを同時に投げるとき、出る目の最小値が4である確実は?
(2)3個のサイコロを順番に投げるとき、出る目の最小値が4である確率は?
この動画を見る
【数学】確率 反復試行「同時」「順番」の違い解説動画です
-----------------
(1)3個のサイコロを同時に投げるとき、出る目の最小値が4である確実は?
(2)3個のサイコロを順番に投げるとき、出る目の最小値が4である確率は?
複素数とは?名古屋工業大
単元:
#数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(\sqrt3+i)^m=(1+i)^n$,最小の自然数$m,n$を求めよ.
1967名古屋工大過去問
この動画を見る
$(\sqrt3+i)^m=(1+i)^n$,最小の自然数$m,n$を求めよ.
1967名古屋工大過去問
合同式 数学的帰納法 東工大
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.
東工大過去問
この動画を見る
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.
東工大過去問
合同式の基本 整数問題
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1\times 3\times 5\times 7\times・・・・・・\times 999$を$16$で割った余りを求めよ.
この動画を見る
$1\times 3\times 5\times 7\times・・・・・・\times 999$を$16$で割った余りを求めよ.
3乗根の外し方
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\alpha=\sqrt[3]{7+5\sqrt2},\beta=\sqrt[3]{7-5\sqrt2}$である.
$\alpha^n+\beta^n$が自然数を示せ.
一橋大過去問
この動画を見る
$\alpha=\sqrt[3]{7+5\sqrt2},\beta=\sqrt[3]{7-5\sqrt2}$である.
$\alpha^n+\beta^n$が自然数を示せ.
一橋大過去問
整数問題 一橋大(類)
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
すべての自然数$n$について$7^n+an+b$が$36$の倍数となる$36$以下の自然数$a,b$を求めよ.
一橋大(類)過去問
この動画を見る
すべての自然数$n$について$7^n+an+b$が$36$の倍数となる$36$以下の自然数$a,b$を求めよ.
一橋大(類)過去問
整数問題 九州大
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$n$が偶数なら$2^n-1$は3の倍数を示せ.
(2)$2^m+1$と$2^m-1$は互いに素($m$は自然数)を示せ.
(3)$p,q$は異なる素数$2^{p-1}-1=pq^2$である.
$(p,q)$をすべて求めよ.
2015九州大過去問
この動画を見る
(1)$n$が偶数なら$2^n-1$は3の倍数を示せ.
(2)$2^m+1$と$2^m-1$は互いに素($m$は自然数)を示せ.
(3)$p,q$は異なる素数$2^{p-1}-1=pq^2$である.
$(p,q)$をすべて求めよ.
2015九州大過去問