数学(高校生)
数学オリンピック 予選の簡単な問題
単元:
#数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
10!の正の約数dすべてについて
$\frac{1}{d+ \sqrt{10!} }$の合計
この動画を見る
数学オリンピック予選
10!の正の約数dすべてについて
$\frac{1}{d+ \sqrt{10!} }$の合計
気象大学校 3次方程式と複素数 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#気象大学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
気象大学校過去問題
$x^3+x^2-x+a=0$ (a実数)は$cosθ+isinθ(0^\circ <θ<90^\circ )$を解にもつ。
θ,a,すべての解を求めよ。
この動画を見る
気象大学校過去問題
$x^3+x^2-x+a=0$ (a実数)は$cosθ+isinθ(0^\circ <θ<90^\circ )$を解にもつ。
θ,a,すべての解を求めよ。
千葉大(医)訂正版 整数問題 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て
この動画を見る
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て
北海道大 積分 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#北海道大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'02北海道大学過去問題
a,b,cは定数
$f(x)=x^2+ax+b,g(x)=x+c$
(1)$\int_0^1f(x)dx = \int_0^1g(x)dx$となるためのa,b,cの条件
(2)(1)の条件のもとで、$0 \leqq x \leqq 1$における2つの関数f(x)とg(x)の共有点の個数
この動画を見る
'02北海道大学過去問題
a,b,cは定数
$f(x)=x^2+ax+b,g(x)=x+c$
(1)$\int_0^1f(x)dx = \int_0^1g(x)dx$となるためのa,b,cの条件
(2)(1)の条件のもとで、$0 \leqq x \leqq 1$における2つの関数f(x)とg(x)の共有点の個数
千葉大(医)訂正版をご覧ください。別解をコメントしてくださった方がいるので、公開はします。Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て求めよ.
この動画を見る
2013千葉大学過去問題
$m^4+14m^2$が$2m+1$の整数倍となるような整数mを全て求めよ.
慶應義塾 多項定理 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#式の計算(整式・展開・因数分解)#場合の数#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$(3x^2+x-2)^5$
$x^6$の係数
この動画を見る
慶応義塾大学過去問題
$(3x^2+x-2)^5$
$x^6$の係数
群馬大・津田塾大 数列の和・積分 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B#津田塾大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で
津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
この動画を見る
群馬大学過去問題
$a_k= \frac{(3k+1)(3k+2)}{3k(k+1)}$ (k自然数)
$\displaystyle\sum_{k=1}^n a_k$をnの式で
津田塾大学過去問題
$C:y=x^2-x-4|x-1|$と直線lは2点で接する。
Cとlで囲まれた面積
東京理科大 確率 サイコロ3個 高校数学 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京理科大学過去問題
サイコロ3個を投げる。
次のそれぞれの確率。
(1)3または6が少なくとも1つ出る
(2)3または5または6が少なくとも1つ出る
(3)出た目の積が15の倍数
この動画を見る
東京理科大学過去問題
サイコロ3個を投げる。
次のそれぞれの確率。
(1)3または6が少なくとも1つ出る
(2)3または5または6が少なくとも1つ出る
(3)出た目の積が15の倍数
富山大 積分 6分の1公式 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
富山大学過去問題
$y=x^2-2x+1$と$y=mx+2$とで囲まれる面積の最小値
この動画を見る
富山大学過去問題
$y=x^2-2x+1$と$y=mx+2$とで囲まれる面積の最小値
【高校数学】2次不等式②~連立不等式・基礎と応用~ 2-12【数学Ⅰ】
【数学I】データの分析を図やイメージで解説する動画
慶應義塾 二次式 高校数学 Mathematics Japanese university entrance exa
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#式と証明#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
a,b,cは実数
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2 \leqq y \leqq 2$の範囲で$v(y) \geqq 0$であることを示せ
この動画を見る
慶応義塾大学過去問題
a,b,cは実数
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2 \leqq y \leqq 2$の範囲で$v(y) \geqq 0$であることを示せ
慶應義塾 二次式 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c$は実数である.
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2\leqq y\leqq 2$の範囲で$v(y)\geqq 0$であることを示せ.
慶應大過去問
この動画を見る
$a,b,c$は実数である.
$v(y)=acy^2+(ab+bc)y+a^2+b^2+c^2-2ac$
$-2\leqq y\leqq 2$の範囲で$v(y)\geqq 0$であることを示せ.
慶應大過去問
立教大 微分・積分 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
$f(x)=x^3+3x^2+4$に(1,a)からちょうど2本の接線が引ける。
最小のaに対して2本の接線とf(x)で囲まれる面積
この動画を見る
立教大学過去問題
$f(x)=x^3+3x^2+4$に(1,a)からちょうど2本の接線が引ける。
最小のaに対して2本の接線とf(x)で囲まれる面積
【数学I】センター2018 第3問 確率 !!解説!!
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学I】センター2018 第3問 確率 解説動画です
この動画を見る
【数学I】センター2018 第3問 確率 解説動画です
【高校数学】加法定理②~2倍角・半角の公式~ 4-13【数学Ⅱ】
神戸大 確率 高校数学 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'92神戸大学過去問題
10個の白玉と20個の赤玉が入った袋から1個ずつ取り出す(戻さない)
n回目にちょうど4個目の白玉が取り出される確率$P_n$
C,P,!等を用いてよい
この動画を見る
'92神戸大学過去問題
10個の白玉と20個の赤玉が入った袋から1個ずつ取り出す(戻さない)
n回目にちょうど4個目の白玉が取り出される確率$P_n$
C,P,!等を用いてよい
順天堂・御茶ノ水女子 複素数 高校数学 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#順天堂大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値
2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
この動画を見る
順天堂大学過去問題
1⃣
$α^4+α^3+α^2+α+1=0$
$α^6(α^7+1)(α+1)$の値
2⃣
$\sqrt3 + i +z$の絶対値を最大にする複素数Z
ただし|Z|=1
漸化式 初級から中級への橋渡し 1問を3通りの解法で Mathematics Japanese university entrance exam
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
次の漸化式、3通りの解法を考えて下さい。
$a_1=1 \quad$ $a_{n+1}=\frac{1}{2}a_n+\frac{1}{3^n}$
特性方程式
$a_{n+1}=α a_n+β \quad$ $x=αx+β$
$a_{n+2}=αa_{n+1}+β a_n=0 \quad$ $x^2+αx+β=0$
この動画を見る
次の漸化式、3通りの解法を考えて下さい。
$a_1=1 \quad$ $a_{n+1}=\frac{1}{2}a_n+\frac{1}{3^n}$
特性方程式
$a_{n+1}=α a_n+β \quad$ $x=αx+β$
$a_{n+2}=αa_{n+1}+β a_n=0 \quad$ $x^2+αx+β=0$
名古屋市立(医) 対数方程式 実数解 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
この動画を見る
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
【高校数学】2次不等式①~これで理解できるくね?~ 2-11【数学Ⅰ】
横浜市立(医)2n次方程式の実数解の個数 高校数学 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
'82横浜市立大学過去問題
$n \geqq 2$自然数
$\frac{x^{2n}}{2n+1} - \frac{x^{n+1}}{n+2} + \frac{x^{n-1}}{n} -1 = 0$
実数解の個数
この動画を見る
'82横浜市立大学過去問題
$n \geqq 2$自然数
$\frac{x^{2n}}{2n+1} - \frac{x^{n+1}}{n+2} + \frac{x^{n-1}}{n} -1 = 0$
実数解の個数
奈良県立医大 整数問題 高校数学 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
奈良県立医科大学過去問題
$S_n=1^n+2^n+3^n+4^n$ n自然数
$S_n$が6の倍数となる条件
この動画を見る
奈良県立医科大学過去問題
$S_n=1^n+2^n+3^n+4^n$ n自然数
$S_n$が6の倍数となる条件
【高校数学】2次方程式④~放物線と直線の共有点~ 2-10【数学Ⅰ】
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)放物線y=x²-4x+5と直線y=x+1の共有点の座標を求めよ。
(2)放物線y=x²-1と直線y=2x-kが接するとき、定数kの値を求めよ。
この動画を見る
(1)放物線y=x²-4x+5と直線y=x+1の共有点の座標を求めよ。
(2)放物線y=x²-1と直線y=2x-kが接するとき、定数kの値を求めよ。
大分大 漸化式 高校数学 Mathematics Japanese university entrance exam
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
大分大学過去問題
$a_1=\frac{1}{2},a_{n+1}=a_n+\frac{2n+1}{2^{n+1}}$
一般項を求めよ。
この動画を見る
大分大学過去問題
$a_1=\frac{1}{2},a_{n+1}=a_n+\frac{2n+1}{2^{n+1}}$
一般項を求めよ。
【高校数学】加法定理①~語呂合わせで覚える加法定理~ 4-12【数学Ⅱ】
【数学】チャート式を秒速で復習して知識の総整理を1時間で終わらせる具体的な方法~全国模試1位の勉強法【篠原好】
単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
知識の総整理を1時間で終わらせる具体的な方法
「チャート式の秒速復習法」についてお話しています。
この動画を見る
知識の総整理を1時間で終わらせる具体的な方法
「チャート式の秒速復習法」についてお話しています。
横浜国立大 場合の数・数列の和 Mathematics Japanese university entrance exam
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
この動画を見る
横浜国立大学過去問題
1~nの整数から異なる2つの整数をとり出し、その2つの整数の和をS、積をtとする。
(1)とり出し方全てを考えたときのSの総和
(2)とり出し方全てを考えたときのtの総和
神戸薬 放物線と2本の接線で囲まれた面積 積分 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
y=x上のT(t,t)から$y=x^2+1$へ2本の接線を引く。
接点をA,B。放物線とTA,TBで囲まれた面積をSとする。
Sの最小値
この動画を見る
神戸薬科大学過去問題
y=x上のT(t,t)から$y=x^2+1$へ2本の接線を引く。
接点をA,B。放物線とTA,TBで囲まれた面積をSとする。
Sの最小値
広島大 積分 Mathematics Japanese university entrance exam
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$f(x)=x^2+ax+b$
$\int_0^1 xf(x) dx = \int_0^1 x^2f(x) dx$を満たす
(1)$\int_0^1 f(x) dx$の値
(2)方程式f(x)=0は相異2実根をもち、そのうち少なくとも1つは0と1の間にあることを示せ
この動画を見る
広島大学過去問題
$f(x)=x^2+ax+b$
$\int_0^1 xf(x) dx = \int_0^1 x^2f(x) dx$を満たす
(1)$\int_0^1 f(x) dx$の値
(2)方程式f(x)=0は相異2実根をもち、そのうち少なくとも1つは0と1の間にあることを示せ