数学(高校生) - 質問解決D.B.(データベース) - Page 282

数学(高校生)

福田の一夜漬け数学〜絶対値の攻略(2)〜応用編、高校1年生用

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$|x+3|+|x-1|=4x-1$

$|x+3|+|x-1| \leqq 4-x$
(1)絶対値を場合分けして外して解け。
(2)グラフを利用して解け。
この動画を見る 

大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る 

福田の一夜漬け数学〜絶対値の攻略(1)〜数学I基本編

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(練習) $y=|x|+1$ のグラフを描け。

(練習) $y=|2x-1|$ のグラフを描け。

(練習) $|3x+5|=1$ $|3x+5| \lt 1$ $|3x+5| \gt 1$
を満たすような$x$を求めよ。


(1)$|x-1|=2x$ を満たすxを求めよ。
(2)$|x-1| \lt 2x$ を満たすxを求めよ。
(3)$|x-1| \gt 2x$ を満たすxを求めよ。
この動画を見る 

東大 確率 漸化式 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91東京大学過去問題
正四面体をn回転がしたとき、最初に床に接していた面が床に接している確率
この動画を見る 

一橋大学(’94)微分 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
一橋大学'94過去問題
$y=x^3$と$y=x^2+x+c$
との両方に接する直線が4本あるようなcの範囲
この動画を見る 

福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#指数関数と対数関数#微分法と積分法#軌跡と領域#指数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
この動画を見る 

東工大(’86)整数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'86過去問題
整数$a_n = 19^n+(-1)^{n-1}・2^{4n-3}$
$(n=1,2,3\cdots)$
のすべてを割り切る素数を求めよ。
この動画を見る 

福田の一夜漬け数学〜多変数関数、1文字固定その2(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\triangle ABC$において次の不等式を示せ。
(1)$\cos A+\cos B+\cos C \leqq \frac{3}{2}$
(2)$\cos A\cos B \cos C \leqq \frac{1}{8}$
この動画を見る 

慶應(医)ピタゴラス数 効果的勉強法 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題'68
$a^2+b^2+c^2$を満足する3つの正の整数a,b,cをピタゴラス数という。
a,b,cがピタゴラス数であるとき
(1)$\frac{b+c}{a}=t$とおいて、a:b:cをtの整式の比として表せ。
(2)$100 \geqq a+b+c \geqq 50$の例を2つあげよ(a,b,c互いに素)
この動画を見る 

cos72°を求めよ(誘導あり)慶應(経済)Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
'02慶応義塾大学過去問題
$Z=cos72^\circ+i sin72^\circ$とおく
$Z^n=1$をみたす最小の自然数nは▢
よって、Zは方程式
$Z^4+▢Z^3+▢Z^2+Z+1=0$の解。
$W=Z+\frac{1}{Z}$とおくと、Wは方程式
$W^2+▢W+▢ = 0$の解
$\frac{1}{Z} = cos72^\circ- i sin72^\circ ,cos72^\circ > 0 $
$cos72^\circ = \frac{\sqrt▢-▢}{▢}$

慶應(経済)過去問
この動画を見る 

福田の一夜漬け数学〜多変数関数、1文字固定(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#微分法と積分法#恒等式・等式・不等式の証明#軌跡と領域#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a+b+c=1$のとき、$a^2+b^2+c^2$の最小値を求めよ。

$xy$平面内の領域$-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$ において、$1-ax-by+axy$
の最小値が正であるような$(a,b)$の存在範囲を図示せよ。
この動画を見る 

東京工業大学 三次方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京工業大学'72過去問題
$x^3-x+k=0(k>0)$
絶対値が1の虚根をもつ。
3つの根を求めよ。
この動画を見る 

福田の一夜漬け数学〜複素数平面(1)〜極形式と回転

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(練習)以下の式を極形式表示に直せ。ただし$0 \leqq \theta\leqq 2\pi$とする。
(1)$2-2i$
(2)$(2-2\sqrt3i)(i-1)$


$\alpha=1+i,\beta=3+2i$のとき、この2点を一辺とする正三角形の
残りの頂点を表す複素数を求めよ。
この動画を見る 

北海道大学 2種類の数字でできてるn桁の数字の個数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)2種類の数でできている4桁の数の個数

(2)n桁の場合

北海道大過去問
この動画を見る 

大阪大学 自然数(2以上)の立方の逆数の和 1/4未満 示せ 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数(2以上)の立方の逆数の和 が1/4未満であることを示せ.

大阪大学過去問
この動画を見る 

福田の一夜漬け数学〜ルート計算のコツ(2)値の計算

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x=\frac{\sqrt5+2}{\sqrt5-2}$

$y=\frac{\sqrt5-2}{\sqrt5+2}$ のとき、次の値を求めよ。

(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3$
(5)$x^4+y^4$
(6)$x^5+y^5$


$x=\sqrt5+2$のとき、次の値を求めよ。
(1)$x+\frac{1}{x}$

(2)$x^2+\frac{1}{x^2}$

(3)$x^3+\frac{1}{x^3}$

(4)$x^4+\frac{1}{x^4}$

(5)$x^5+\frac{1}{x^5}$


$\frac{1}{2-\sqrt3}$の整数部分を$a$,少数部分を$b$とする。次の値を求めよ。
(1)$a$
(2)$b$
(3)$a+b+b^2$
この動画を見る 

整数問題。1,1,2,2,3,3,4,4,を適当に並べてできる数は平方数でないことを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1,1,2,2,3,3,4,4
この8個の数を並べてできる8桁の数は平方数でないことを証明せよ。
この動画を見る 

福田の一夜漬け数学〜ルート計算のコツ(1)〜有理化と二重根号

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の分数を有理化せよ。
$\frac{\sqrt2+\sqrt3-\sqrt5}{\sqrt2-\sqrt3+\sqrt5}$

$\frac{\sqrt2+\sqrt5+\sqrt7}{\sqrt2+\sqrt5-\sqrt7}+\frac{\sqrt2-\sqrt5+\sqrt7}{\sqrt2-\sqrt5-\sqrt7}$

以下の2重根号を外し、最も簡単な数で表せ。
$\sqrt{4+2\sqrt3}$

$\sqrt{5-2\sqrt6}$

$\sqrt{5+\sqrt{24}}$

$\sqrt{4+\sqrt7}$

$\sqrt{10+5\sqrt3}$
この動画を見る 

京都大学入試問題 3次方程式が整数解を持たない時、解は無理数であることの証明 高校数学

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式$x^3+x-8=0$は
(1)ただ1つの実根を1と2との間にもつことを示せ。

(2)この根は無理数であることを証明せよ。

京大過去問
この動画を見る 

伝説の東大入試問題 π>3.05を証明せよ 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
伝説の東大入試問題

π>3.05を証明せよ
この動画を見る 

福田の一夜漬け数学〜平面ベクトル(1)〜受験編・文理共通

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$k$を正の実数とする。点Pは$\triangle ABC$の内部にあり、
$k\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }\\$
を満たしている。また、辺$BC$を$3:5$に内分する点を$D$とする。
(1)$\overrightarrow{ AP }$を、$\overrightarrow{ AB },\overrightarrow{ AC },k$を用いて表せ。
(2)3点$A,P,D$は一直線上にあることを示せ。
(3)$\triangle ABP$の面積が$\triangle CDP$の面積の$\frac{6}{5}$倍に等しいとき
$k$の値を求めよ。

【もとになる問題】
点$P$は$\triangle ABC$の内部にあり、
$6\ \overrightarrow{ AP }+5\ \overrightarrow{ BP }+3\ \overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たしている。
(1)点$P$の位置を説明せよ。
(2)$\triangle PBC:\triangle PCA:\triangle PAB$を求めよ。
この動画を見る 

福田の一夜漬け数学〜因数分解たすきがけのコツ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
以下の式をたすき掛けを用いて因数分解せよ。
$4x^2+8x-21$
$12x^2-10x-12$
$-4x^2+15x-9$
$3x^2-2xy-y^2$
$2x^2+5xy+3y^2-3x-5y-2$
$a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)$
この動画を見る 

東大入試問題 無限級数 数列の和 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京大学過去問題
無限級数
$\frac{r}{1-r^2}$+$\frac{r^2}{1-r^4}$+$\frac{r^4}{1-r^8}$+$\cdots$+$\frac{r^{2^{n-1}}}{1-r^{2^{n}}}$
この動画を見る 

東京医科歯科大学、数学、中学生でも解いてみたくなる大学入試問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京医科歯科大学'73 過去問題
m,n自然数$(m \geqq n)$
$x^2-mnx+m+n = 0$
の2つの解がともに整数となるm,nをすべて求めよ。

東京医科歯科大学過去問
この動画を見る 

組立除法、三角関数の合成、視聴者からの質問への返答

アイキャッチ画像
単元: #複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
組立除法、三角関数の合成、視聴者からの質問への返答です.
\begin{array}{r}
x-α\enclose{longdiv}{ax^3+bx^2+cx+d\phantom{0}} \\[-3pt]

\end{array}
この動画を見る 

京大入試問題 数学 頑張れば小中学生にも解けるぞ Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
$n \geqq 3$とする。1,2,・・・,nのうちから重複を許して6個の数字をえらびそれを並べた順列を考える。
このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ。
この動画を見る 

頑張れば小中学生にもできる 東大入試問題 数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
3人でジャンケン
負けた人は以後参加できない。
k回目に1人の勝者が決まる確率を求めよ.

東大過去問
この動画を見る 

漸化式・特性方程式・三項間漸化式・視聴者からの質問への返答

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
漸化式・特性方程式・三項間漸化式・視聴者からの質問への返答です.
$a_{n+2}-3a_{n+1}-4a_n=0$ $a_1=1$ $a_2=2$
この動画を見る 

東大入試問題、場合の数、頑張れば、中学生、中学受験生にも解けるぞ Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ相異なるなる入れ方の総数を求めたい。

(1)1からnまで異なる番号のついたこのボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか 。

(2)互いに区別のつかないn個のボールを、A,B,Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

東大過去問
この動画を見る 

小学生の知識で解ける東大入試問題,整数問題 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
円周上にm個の赤い点とn個の青い点を任意の順序に並べる。これらの点により、円周はm+n個の弧に分けられる。
このとき、これらの弧のうち両端の点の色が異なるものの数は偶数であることを証明せよ。
ただし、$m \geqq 1$,$n \geqq 1$とする。

東大過去問
この動画を見る 
PAGE TOP