数学(高校生)
【高校数学】数Ⅰ-42 2次関数の最大・最小 ①
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
この動画を見る
◎次の2次関数に最大値、最小値があれば、それを求めよう。
①$y=x^2-4x+5(-1 \leqq x \leqq 3)$
②$y=-2x^2-4x+1(0 \leqq x \leqq 2)$
③$y=2x^2-3x+4(-1 \leqq x \leqq 2)$
④$y=x^2+6x-5$
【高校数学】数Ⅰ-41 2次関数⑦(移動編)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①放物線$y=-2x^2-4x+1$をx軸方向に3、y軸方向に-1だけ平行移動して得られる放物線の方程式を求めよう。
②放物線$y=-2x^2-4x+3$の、x軸、y軸、原点それぞれに関する対称移動後の放物線の方程式を求めよう。
この動画を見る
①放物線$y=-2x^2-4x+1$をx軸方向に3、y軸方向に-1だけ平行移動して得られる放物線の方程式を求めよう。
②放物線$y=-2x^2-4x+3$の、x軸、y軸、原点それぞれに関する対称移動後の放物線の方程式を求めよう。
【高校数学】数Ⅰ-40 2次関数⑥
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎2次関数$y=ax^2+bx+c$のグラフが右の図のようになる時、次の値の符号を調べよう。
①$a$
②$b$
③$c$
④$b^2-ac$
⑤$a-b+c$
⑥$a+b+c$
※図は動画内参照
この動画を見る
◎2次関数$y=ax^2+bx+c$のグラフが右の図のようになる時、次の値の符号を調べよう。
①$a$
②$b$
③$c$
④$b^2-ac$
⑤$a-b+c$
⑥$a+b+c$
※図は動画内参照
【高校数学】数Ⅰ-39 2次関数⑤(平方完成の練習編)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次式を平方完成しよう。
①$y=x^2+2x-1$
②$y=2x^2-8x-6$
③$y=x^2-4x$
④$y=-2x^26x+3$
⑤$y=3x^2-5x+2$
⑥$y=\displaystyle \frac{1}{3}x^2+4x$
この動画を見る
◎次の2次式を平方完成しよう。
①$y=x^2+2x-1$
②$y=2x^2-8x-6$
③$y=x^2-4x$
④$y=-2x^26x+3$
⑤$y=3x^2-5x+2$
⑥$y=\displaystyle \frac{1}{3}x^2+4x$
【高校数学】数Ⅰ-38 2次関数④(平方完成編)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$y=ax^2+bx+c$を平方完成すると①y=①____________となり、軸は②x=________、頂点は③(____,____)となる。
◎次の2次式を平方完成しよう。
④$y=x^2-4x+6$
⑤$y=2x^2+8x+3$
⑥$y=-3x^2-18x-17$
この動画を見る
$y=ax^2+bx+c$を平方完成すると①y=①____________となり、軸は②x=________、頂点は③(____,____)となる。
◎次の2次式を平方完成しよう。
④$y=x^2-4x+6$
⑤$y=2x^2+8x+3$
⑥$y=-3x^2-18x-17$
【高校数学】数Ⅰ-37 2次関数③(軸と頂点編)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の2次関数の軸と頂点を求めよう。
①$y=3(x--1)^2-4$
②$y=2x^2+7$
この動画を見る
◎次の2次関数の軸と頂点を求めよう。
①$y=3(x--1)^2-4$
②$y=2x^2+7$
【高校数学】数Ⅰ-36 2次関数②(値域編)
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の値域を求めよう。また、最大値、最小値があれば、それをもとめよう。
①$y=2x+1(2 \leqq x \leqq 3)$
②$y=-3x+2(-1 \leqq x \leqq 2)$
③$y=x^2(-3 \leqq x \leqq 1)$
④$y=3x-5(1 \leqq x \lt 4)$
この動画を見る
◎次の関数の値域を求めよう。また、最大値、最小値があれば、それをもとめよう。
①$y=2x+1(2 \leqq x \leqq 3)$
②$y=-3x+2(-1 \leqq x \leqq 2)$
③$y=x^2(-3 \leqq x \leqq 1)$
④$y=3x-5(1 \leqq x \lt 4)$
【高校数学】数Ⅰ-35 2次関数①
単元:
#数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$f_{(x)}=-2x+3$について、次の値を求めよう。
①$f_{(4)}$
②$f_{(0)}$
③$f_{(1-a)}$
◎次の関数グラフが通る象限を書こう。
④$y=2x-5$
⑤$y=4$
この動画を見る
◎$f_{(x)}=-2x+3$について、次の値を求めよう。
①$f_{(4)}$
②$f_{(0)}$
③$f_{(1-a)}$
◎次の関数グラフが通る象限を書こう。
④$y=2x-5$
⑤$y=4$
【高校数学】数Ⅰ-34 命題⑧
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎次の等式を満たす有理数x,yの値を求めよう。
①$(3+2\sqrt{ 3 })x-(2-\sqrt{ 3 })y+1-4\sqrt{ 3 }=0$
②$\displaystyle \frac{7+x\sqrt{ 3 }}{2+\sqrt{ 3 }}=y+9\sqrt{ 3 }$
この動画を見る
◎次の等式を満たす有理数x,yの値を求めよう。
①$(3+2\sqrt{ 3 })x-(2-\sqrt{ 3 })y+1-4\sqrt{ 3 }=0$
②$\displaystyle \frac{7+x\sqrt{ 3 }}{2+\sqrt{ 3 }}=y+9\sqrt{ 3 }$
【高校数学】数Ⅰ-33 命題⑦(続 背理法編)
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎命題「nは整数とする。$n^2$が3倍ならば、nは3倍数である」は真である。
これを利用して、$\sqrt{ 3 }$が無理であることを証明しよう。
この動画を見る
◎命題「nは整数とする。$n^2$が3倍ならば、nは3倍数である」は真である。
これを利用して、$\sqrt{ 3 }$が無理であることを証明しよう。
【高校数学】数Ⅰ-32 命題⑥(背理法編)
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$\sqrt{ 2 }$が無理数であることを用いて、$5-\sqrt{ 2 }$が無理数であることを証明しよう。
この動画を見る
◎$\sqrt{ 2 }$が無理数であることを用いて、$5-\sqrt{ 2 }$が無理数であることを証明しよう。
【高校数学】数Ⅰ-31 命題⑤
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の命題の逆、裏、対偶を書き、それぞれ真偽を調べよう。
①$x=-1$ならば$x^2=1$
[逆]
[裏]
[対偶]
②$x+y>2$ならば$x>0$または$y>2$
[逆]
[裏]
[対偶]
この動画を見る
◎x,yは実数とする。
次の命題の逆、裏、対偶を書き、それぞれ真偽を調べよう。
①$x=-1$ならば$x^2=1$
[逆]
[裏]
[対偶]
②$x+y>2$ならば$x>0$または$y>2$
[逆]
[裏]
[対偶]
【高校数学】数Ⅰ-30 命題④
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数、m,nは自然数とする。
次の条件の否定を書こう。
①$x<-1$かつ$y \geqq 2$
②$-5 \leqq x<3$
③nは奇数または3の倍数
④m,nともに6の倍数
◎次の命題の否定を書き、その真偽を調べよう。
⑤すべての素数nについて、nは奇数である。
この動画を見る
◎x,yは実数、m,nは自然数とする。
次の条件の否定を書こう。
①$x<-1$かつ$y \geqq 2$
②$-5 \leqq x<3$
③nは奇数または3の倍数
④m,nともに6の倍数
◎次の命題の否定を書き、その真偽を調べよう。
⑤すべての素数nについて、nは奇数である。
【高校数学】数Ⅰ-29 命題③
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$xy=0$は、$x^2+y^2>0$が成立するための▭
②$△ABC∞△PQR$は、$△ABC \equiv △PQR$であるための▭
③$|x|<1$かつ$|y|<1$は、$x^2+y^2<1$であるための▭
この動画を見る
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$xy=0$は、$x^2+y^2>0$が成立するための▭
②$△ABC∞△PQR$は、$△ABC \equiv △PQR$であるための▭
③$|x|<1$かつ$|y|<1$は、$x^2+y^2<1$であるための▭
【高校数学】数Ⅰ-28 命題②
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$x=2$は、$x^2-x-2=0$であるための▭
②$xy=0$は、$x=0$であるための▭
③$|x|=0$は、$x=0$であるための▭
④$xy>1$は、$x>1$であるための▭
この動画を見る
◎x,yは実数とする。
次の▭にあてはまるものを、下のⒶ~Ⓓから選ぼう。
Ⓐ必要十分条件である
Ⓑ必要条件ではあるが、十分条件ではない
Ⓒ十分条件ではあるが、必要条件ではない
Ⓓ必要条件でも十分条件でもない
①$x=2$は、$x^2-x-2=0$であるための▭
②$xy=0$は、$x=0$であるための▭
③$|x|=0$は、$x=0$であるための▭
④$xy>1$は、$x>1$であるための▭
【高校数学】数Ⅰ-27 命題①
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎a,b,cは実数、dは自然数とする。
次の命題の真偽を調べ、偽のときは判例を1つ示そう。
①$a=0$ならば$ab=0$
②$a^2=b^2$ならば$a=b$
③$a<2$ならば$|a|<4$
④dは2倍の倍数 ならば dの4の倍数
⑤$|a|<3$ならば$a<3$
⑥dは18の約数ならばdは36の約数
この動画を見る
◎a,b,cは実数、dは自然数とする。
次の命題の真偽を調べ、偽のときは判例を1つ示そう。
①$a=0$ならば$ab=0$
②$a^2=b^2$ならば$a=b$
③$a<2$ならば$|a|<4$
④dは2倍の倍数 ならば dの4の倍数
⑤$|a|<3$ならば$a<3$
⑥dは18の約数ならばdは36の約数
【高校数学】数Ⅰ-26 集合③
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎U={$x | x$は10以下の自然数}を全体集合とする。
$A \cap B={3}、\overline{ A } \cap \overline{ B }={1,2,5,8,}、\overline{ A } \cap B={4,7,10}$
のとき、次の集合を求めよう。
①$A$
②$B$
③$A \cap\overline{ B}$
この動画を見る
◎U={$x | x$は10以下の自然数}を全体集合とする。
$A \cap B={3}、\overline{ A } \cap \overline{ B }={1,2,5,8,}、\overline{ A } \cap B={4,7,10}$
のとき、次の集合を求めよう。
①$A$
②$B$
③$A \cap\overline{ B}$
【高校数学】数Ⅰ-25 集合②
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎U={$x | x$は9以下の自然数}を全体集合とする。
$U$の部分集合$A={1.3.4.8},B={3.4.5.7.9}$,$C={2,3,7,9}$について、次の集合を求めよう。
①$A \cap B \cap C$
②$A \cap B \cap \overline{ C }$
③$\overline{ A } \cap B \cap C$
④$ \overline{ A \cup B \cup C} $
⑤$\overline{ A } \cap B \cap C$
⑥$(A \cup C) \cap \overline{ B} $
この動画を見る
◎U={$x | x$は9以下の自然数}を全体集合とする。
$U$の部分集合$A={1.3.4.8},B={3.4.5.7.9}$,$C={2,3,7,9}$について、次の集合を求めよう。
①$A \cap B \cap C$
②$A \cap B \cap \overline{ C }$
③$\overline{ A } \cap B \cap C$
④$ \overline{ A \cup B \cup C} $
⑤$\overline{ A } \cap B \cap C$
⑥$(A \cup C) \cap \overline{ B} $
【高校数学】数Ⅰ-24 集合①
単元:
#数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎$U={1.2.3.4.5.6.7.8.9.10}$を全体集合とする。
$U$の部分集合$A={1.2.3.4.8},B={1.3.5.7.9}$について、次の集合を求めよう。
①$A \cap B$
②$A \cup B$
③$\overline{ A } \cap \overline{ B }$
④$ A \cup \overline{ B }$
⑤$\overline{ A } \cap B $
⑥$\overline{ A \cup B} $
この動画を見る
◎$U={1.2.3.4.5.6.7.8.9.10}$を全体集合とする。
$U$の部分集合$A={1.2.3.4.8},B={1.3.5.7.9}$について、次の集合を求めよう。
①$A \cap B$
②$A \cup B$
③$\overline{ A } \cap \overline{ B }$
④$ A \cup \overline{ B }$
⑤$\overline{ A } \cap B $
⑥$\overline{ A \cup B} $
【高校数学】 数A-28 確率⑩ ・ じゃんけん編
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①3人でじゃんけんを1回するとき、1人だけが勝つ確率は?
②3人でじゃんけんを1回するとき、あいこになる確率は?
③4人でじゃんけんを1回するとき、あいこになる確率は?
この動画を見る
①3人でじゃんけんを1回するとき、1人だけが勝つ確率は?
②3人でじゃんけんを1回するとき、あいこになる確率は?
③4人でじゃんけんを1回するとき、あいこになる確率は?
【高校数学】 数A-27 確率⑨ ・ くじ編
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎当たりくじ3本を含む10本のくじがある。
A,Bが個の順に1本ずつ1回だけ引くとき、次の確率を求めよう。
ただし、引いたくじは元に戻さない。
①A,Bともに当たる確率
②Bだけ当たる確率
③そこにCが合流して、A,B,Cの順に1本ずつ引いた時、1人だけが当たる確率
この動画を見る
◎当たりくじ3本を含む10本のくじがある。
A,Bが個の順に1本ずつ1回だけ引くとき、次の確率を求めよう。
ただし、引いたくじは元に戻さない。
①A,Bともに当たる確率
②Bだけ当たる確率
③そこにCが合流して、A,B,Cの順に1本ずつ引いた時、1人だけが当たる確率
【高校数学】 数A-26 確率⑧ ・ 色玉編 Part.4
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①白玉3個、赤玉6個の入っている袋から玉を1個とり出し、色を調べてから元に戻すことを7回繰り返すとき、7回目に3個目の白玉が出る確率は?
②白玉4個、赤玉5個の入っている袋から、玉を1個ずつ取り出す。
取り出した玉を戻さずに続けるとき、袋の中から先に赤玉がなくなる確率は?
この動画を見る
①白玉3個、赤玉6個の入っている袋から玉を1個とり出し、色を調べてから元に戻すことを7回繰り返すとき、7回目に3個目の白玉が出る確率は?
②白玉4個、赤玉5個の入っている袋から、玉を1個ずつ取り出す。
取り出した玉を戻さずに続けるとき、袋の中から先に赤玉がなくなる確率は?
【高校数学】 数A-25 確率⑦ ・ 色玉編 Part.3
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎Aの袋には赤玉6個と白玉4個、Bの袋には赤玉4個と白玉6個が入っている。
①A,Bの袋からそれぞれ玉を1個とり出すとき、玉の色が異なる確率は?
②A,Bの袋からそれぞれ玉を2個とり出すとき、4個すべて同じ色である確率は?
この動画を見る
◎Aの袋には赤玉6個と白玉4個、Bの袋には赤玉4個と白玉6個が入っている。
①A,Bの袋からそれぞれ玉を1個とり出すとき、玉の色が異なる確率は?
②A,Bの袋からそれぞれ玉を2個とり出すとき、4個すべて同じ色である確率は?
【高校数学】 数A-24 確率⑥ ・ 色玉編 Part.2
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎袋の中に白玉6個、赤玉4個、青玉3個が入っている。
ここから、球を同時に4個とり出すとき、次の確率は?
①少なくとも2個青玉が出る。
②取り出した玉にどの色のものも含まれる。
この動画を見る
◎袋の中に白玉6個、赤玉4個、青玉3個が入っている。
ここから、球を同時に4個とり出すとき、次の確率は?
①少なくとも2個青玉が出る。
②取り出した玉にどの色のものも含まれる。
【高校数学】 数A-23 確率⑤ ・ 色玉編 Part.1
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎袋の中に白玉5個、赤玉4個が入っている。
ここから、球を同時に5個とり出す。
①白玉が4個、赤玉1個出る確率は?
②同じ色の玉が2個出る確率は?
この動画を見る
◎袋の中に白玉5個、赤玉4個が入っている。
ここから、球を同時に5個とり出す。
①白玉が4個、赤玉1個出る確率は?
②同じ色の玉が2個出る確率は?
【高校数学】 数A-22 確率④ ・ さいころ編 Part.4
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎数値線上の原点Oに点Pがある。
さいころを1回投げるごとに、偶数の目が出たら数値線上の方向に3、奇数の目が出たら負の方向に2だけ進む。
①5回さいころを投げたとき、点Pが原点Oにある確率は?
②10回さいころを投げたとき、Pの座標がー5である確率は?
この動画を見る
◎数値線上の原点Oに点Pがある。
さいころを1回投げるごとに、偶数の目が出たら数値線上の方向に3、奇数の目が出たら負の方向に2だけ進む。
①5回さいころを投げたとき、点Pが原点Oにある確率は?
②10回さいころを投げたとき、Pの座標がー5である確率は?
【高校数学】 数A-21 確率③ ・ さいころ編 Part.3
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎1個のさいころを6回投げるとき、次の場合の確率は?
①奇数の目がちょうど3回でる。
②2以下の目がちょうど4回でる。
③3以上の目がちょうど1回でる。
この動画を見る
◎1個のさいころを6回投げるとき、次の場合の確率は?
①奇数の目がちょうど3回でる。
②2以下の目がちょうど4回でる。
③3以上の目がちょうど1回でる。
【高校数学】 数A-20 確率② ・ さいころ編Part.2
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?
①出る目の最大値が5以下
②出る目の最大値が5
③出る目の最小値が3
④出る目の最大値が3以上5以下
この動画を見る
◎3個のさいころを同時に投げるとき、次の場合の確率は?
①出る目の最大値が5以下
②出る目の最大値が5
③出る目の最小値が3
④出る目の最大値が3以上5以下
【高校数学】 数A-19 確率① ・ さいころ編Part.1
単元:
#数A#場合の数と確率#確率#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
◎3個のさいころを同時に投げるとき、次の場合の確率は?
①目の和が6になる。
②少なくとも1個は3の目が出る。
③目の積が5の倍数になる。
④少なくとも2個の目が同じである。
この動画を見る
◎3個のさいころを同時に投げるとき、次の場合の確率は?
①目の和が6になる。
②少なくとも1個は3の目が出る。
③目の積が5の倍数になる。
④少なくとも2個の目が同じである。
【高校数学】 数A-18 組合せ⑤ ・ 重複編
単元:
#数A#場合の数と確率#場合の数#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①桃、みかん、梨の3種類の果物がたくさんあり、その中から6個果物を買うとき、買い方は何通り?
②方程式$x+y+z=7$の負ではない整数解は何個?
③方程式$x+y+z=12$の正の整数解は何個?
この動画を見る
①桃、みかん、梨の3種類の果物がたくさんあり、その中から6個果物を買うとき、買い方は何通り?
②方程式$x+y+z=7$の負ではない整数解は何個?
③方程式$x+y+z=12$の正の整数解は何個?