数学(高校生)
数学(高校生)
慶應義塾大(商)数列の和

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k・2^{k+2}$
出典:2000年慶應義塾大学商学部 過去問
この動画を見る
$\displaystyle \sum_{k=1}^n k・2^{k+2}$
出典:2000年慶應義塾大学商学部 過去問
接弦定理(数A )(高校入試数学)

確率漸化式

単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
この動画を見る
$1~3n$の整数を$A,B,C$3つの組に分ける。
$A$の合計が3の倍数になる確率$P_n$を求めよ。
※数字が1つも入らない組があってもよい
相加平均と相乗平均の関係(数II)

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x \gt 0$のとき$x+\displaystyle \frac{4}{x}$の最小値を求めよ。
この動画を見る
$x \gt 0$のとき$x+\displaystyle \frac{4}{x}$の最小値を求めよ。
チェバの定理の証明(数A)

チェバの定理(数A)

【数学】『一対一』の効果的な使い方~全国模試1位の勉強法【篠原好】

等差数列❌等比数列の和

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
数学を数楽に
問題文全文(内容文):
以下の和を求めよ
$1\times1+2\times2+3\times2^2+…+n\times2^{n-1}=??$
この動画を見る
以下の和を求めよ
$1\times1+2\times2+3\times2^2+…+n\times2^{n-1}=??$
2020年問題 合同式の基本

【数学A】「図形の性質」が嫌でもスルスル入ってくる動画【方べきの定理・接弦定理・チェバの定理・メネラウスの定理・角の二等分線】

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
問題文全文(内容文):
【数学A】図形の性質(方べきの定理・接弦定理・チェバの定理・メネラウスの定理・角の二等分線)解説動画です
この動画を見る
【数学A】図形の性質(方べきの定理・接弦定理・チェバの定理・メネラウスの定理・角の二等分線)解説動画です
岡山大 複素数

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#岡山大学
指導講師:
問題文全文(内容文):
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$
出典:岡山大学 過去問
この動画を見る
$w=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$
$(w+2)^n+(w^2+2)^n$が整数であることを示せ$(n$自然数$)$
出典:岡山大学 過去問
【数A】n進法について7分でマスターしよう

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数A】n進法について解説動画です
-----------------
6132を8進法で表せ。
この動画を見る
【数A】n進法について解説動画です
-----------------
6132を8進法で表せ。
京都産業大 複雑な数列の和

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$k,N$自然数
$a_k=[\sqrt{ k }]$ガウス記号
$\displaystyle \sum_{k=1}^{N^2} a_k$を$N$で表せ
出典:2000年京都産業大学 過去問
この動画を見る
$k,N$自然数
$a_k=[\sqrt{ k }]$ガウス記号
$\displaystyle \sum_{k=1}^{N^2} a_k$を$N$で表せ
出典:2000年京都産業大学 過去問
一橋大 解説ヨビノリたくみさん 円と放物線の接線

単元:
#数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
原点を中心とする半径$r$の円と、放物線$y=\displaystyle \frac{1}{2}g^2+1$との両方に接する直線のうち、互いに直交するものがある。
$r$の値を求めよ。
出典:1997年一橋大学 過去問
この動画を見る
原点を中心とする半径$r$の円と、放物線$y=\displaystyle \frac{1}{2}g^2+1$との両方に接する直線のうち、互いに直交するものがある。
$r$の値を求めよ。
出典:1997年一橋大学 過去問
円に内接する四角形(数A 高校入試数学)

単元:
#数学(中学生)#中3数学#数A#図形の性質#円#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係
指導講師:
数学を数楽に
問題文全文(内容文):
円に内接する四角形の性質について説明動画です
この動画を見る
円に内接する四角形の性質について説明動画です
メネラウスの定理の証明(数A)

単元:
#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
メネラウスの定理の証明
動画内の図で$\displaystyle \frac{a}{b}\times\displaystyle \frac{c}{d}\times\displaystyle \frac{e}{f}$が$1$になることを証明してください。
この動画を見る
メネラウスの定理の証明
動画内の図で$\displaystyle \frac{a}{b}\times\displaystyle \frac{c}{d}\times\displaystyle \frac{e}{f}$が$1$になることを証明してください。
メネラウスはブーメランで覚える!!

東京理科大 多項定理

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(1+x+x^2)^n$の$x^2$の係数を$a_n$
$a_n$を$n$で表せ
出典:2000年東京理科大学 過去問
この動画を見る
$(1+x+x^2)^n$の$x^2$の係数を$a_n$
$a_n$を$n$で表せ
出典:2000年東京理科大学 過去問
福田の入試問題解説〜アプリの紹介です。

千葉大 漸化式 良問再投稿

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
この動画を見る
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$
以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2
出典:2013年千葉大学 過去問
東大医学部 宇佐見すばるさん登場

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
整数$a,b$は3の倍数でない。
$f(x)=2x^3+a^2x^2+2b^2x+1$
(1)
$f(1)$と$f(2)$を3で割った余りをそれぞれ求めよ。
(2)
$f(x)=0$を満たす整数$x$は存在しないことを示せ
(3)
$f(x)=0$を満たす有理数$x$が存在するような組$(a,b)$を求めよ
出典:2018年九州大学 過去問
この動画を見る
整数$a,b$は3の倍数でない。
$f(x)=2x^3+a^2x^2+2b^2x+1$
(1)
$f(1)$と$f(2)$を3で割った余りをそれぞれ求めよ。
(2)
$f(x)=0$を満たす整数$x$は存在しないことを示せ
(3)
$f(x)=0$を満たす有理数$x$が存在するような組$(a,b)$を求めよ
出典:2018年九州大学 過去問
もっちゃんと学ぶ「合同式」

九州大 三次関数 積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ
出典:2018年九州大学 過去問
この動画を見る
$f(x)=x^3+ax^2+bx+c(c \gt 0)$は$(c,0)$で$x$軸と接する。
$f(x)$と$x$軸とで囲まれる面積が最小となる$c$の値を求めよ
出典:2018年九州大学 過去問
2020年問題 数2Bまでの知識で解けます

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(45+\sqrt{ 2020 })^{2020}$の整数部分の下2ケタを求めよ
この動画を見る
$(45+\sqrt{ 2020 })^{2020}$の整数部分の下2ケタを求めよ
完全順列(モンモールの問題)【高校数学】

一橋大 三次関数と接線

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問
この動画を見る
$f(x)=x^3+3x^2$
$g(x)=x^3+3x^2+c(c \geqq 0)$
$f(x)$上の点$P(p,f(p))$における接線$l$が$g(x)$と点$Q(q,g(q))$で接し、点$R$で$f(x)$と交わる。
(1)
$c$を$p$で表せ
(2)
$PQ:QR$
出典:2000年一橋大学 過去問
茨城大 不等式の証明 (補)3数の相加相乗平均証明

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2+y^2+z^2 \geqq ax(y-z)$がすべての実数$x,y,z$について成り立つ実数$a$の範囲を求めよ
出典:2000年茨城大学 過去問
この動画を見る
$x^2+y^2+z^2 \geqq ax(y-z)$がすべての実数$x,y,z$について成り立つ実数$a$の範囲を求めよ
出典:2000年茨城大学 過去問
【数学II】tanθの加法定理と直線の方程式

単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】tanθの加法定理と直線の方程式の解説動画です
-----------------
(0,3)を通り、直線$y=\displaystyle \frac{1}{2}x+2$と$\displaystyle \frac{\pi}{3}$の角をなす直線の方程式を求めよ。
この動画を見る
【数学II】tanθの加法定理と直線の方程式の解説動画です
-----------------
(0,3)を通り、直線$y=\displaystyle \frac{1}{2}x+2$と$\displaystyle \frac{\pi}{3}$の角をなす直線の方程式を求めよ。
三重大 2変数関数の最大値

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
実数$x,y$が$x^2+2xy+2y^2=1$を満たすとき、$2x^2+2xy+y^2$の最大値を求めよ
出典:三重大学 過去問
この動画を見る
実数$x,y$が$x^2+2xy+2y^2=1$を満たすとき、$2x^2+2xy+y^2$の最大値を求めよ
出典:三重大学 過去問
一橋大 複素数 インド式掛け算

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a,b,c,d$は自然数
$w=a+bi,z=c+di$
$w^2z=1+18i$
$a,b,c,d$を求めよ
出典:2000年一橋大学 過去問
この動画を見る
$a,b,c,d$は自然数
$w=a+bi,z=c+di$
$w^2z=1+18i$
$a,b,c,d$を求めよ
出典:2000年一橋大学 過去問
