数学(高校生)
数学(高校生)
【高校数学】数Ⅲ-115 関数の増減

単元:
#微分とその応用#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の増減)
Q.次の関数の増減を調べよ
①$f(x)=-3x^4+4x^3+12x^2$
➁$f(x)=x\log x$
この動画を見る
数Ⅲ(関数の増減)
Q.次の関数の増減を調べよ
①$f(x)=-3x^4+4x^3+12x^2$
➁$f(x)=x\log x$
東大(文)三次方程式と合成関数 実数解の個数 高校数学 Mathematics Japanese university entrance exam Tokyo University

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
2004東京大学過去問題
$f(x)=x^3-3x$
$g(x)= \{ f(x) \}^3-3f(x)$
$h(x)= \{ g(x) \}^3-3g(x)$
(1)f(x)=a (実数)を満たす実数xの個数
(2)g(x)=0を満たす実数xの個数
(3)h(x)=0を満たす実数xの個数
この動画を見る
2004東京大学過去問題
$f(x)=x^3-3x$
$g(x)= \{ f(x) \}^3-3f(x)$
$h(x)= \{ g(x) \}^3-3g(x)$
(1)f(x)=a (実数)を満たす実数xの個数
(2)g(x)=0を満たす実数xの個数
(3)h(x)=0を満たす実数xの個数
旭川医大 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題
数列{$a_n$},{$b_n$}
$b_n=3a_{n+1}-2a_n$と定義
{$b_n$}は初項b$(\neq 0)$,公比rの等比数列
(1)$b=r=2 , a_1=\frac{1}{2}$のとき{$a_n$}の一般項
(2){$a_n$}が等比数列となるための必要十分条件を$b,r,a_1$を用いて表せ。
この動画を見る
旭川医科大学過去問題
数列{$a_n$},{$b_n$}
$b_n=3a_{n+1}-2a_n$と定義
{$b_n$}は初項b$(\neq 0)$,公比rの等比数列
(1)$b=r=2 , a_1=\frac{1}{2}$のとき{$a_n$}の一般項
(2){$a_n$}が等比数列となるための必要十分条件を$b,r,a_1$を用いて表せ。
千葉大 三次関数と放物線 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
千葉大学過去問題
a実数、2つの曲線
$y=x^3+2ax^2-3a^2x-4$
$y=ax^2-2a^2x-3a$
はある共有点で両方に共通な接線をもつ。aを求めよ
この動画を見る
千葉大学過去問題
a実数、2つの曲線
$y=x^3+2ax^2-3a^2x-4$
$y=ax^2-2a^2x-3a$
はある共有点で両方に共通な接線をもつ。aを求めよ
岡山県立大 複素数 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#岡山県立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$ n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
この動画を見る
岡山県立大学過去問題
$ω=\frac{-1+\sqrt3i}{2}$ n自然数
(1)$ω^{2005}$の値
(2)$ω^{n+1}+(ω+1)^{2n-1}=0$示せ
(3)整式$x^{n+1}+(x+1)^{2n-1}$は、$x^2+x+1$で割り切れる。示せ。
東京理科 分数型漸化式 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
東京理科大学過去問題
$a_1=3,\quad a_{n+1}= \frac{3a_n+2}{a_n+2}$
数列{$a_n$}の一般項を求めよ。
この動画を見る
東京理科大学過去問題
$a_1=3,\quad a_{n+1}= \frac{3a_n+2}{a_n+2}$
数列{$a_n$}の一般項を求めよ。
広島大 漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
広島大学過去問題
$9a_{n+1}=a_n+\frac{4}{3^n},a_1=-30$
一般項を求めよ。
この動画を見る
広島大学過去問題
$9a_{n+1}=a_n+\frac{4}{3^n},a_1=-30$
一般項を求めよ。
福田の一夜漬け数学〜図形と方程式〜領域(11)証明問題への領域の利用、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $|a+b| \leqq 1$ かつ $|a-b| \leqq 1 \iff |a|+|b| \leqq 1$ を証明せよ。
${\Large\boxed{2}}$ $a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
-1 \leqq a+b-c \leqq 1 \cdots①\\
-1 \leqq a-b-c \leqq 1 \cdots②\\
-1 \leqq c \leqq 1 \cdots③\\
\end{array}
\right.
\end{eqnarray}$
このとき、$|a++2b| \leqq 4$ $\cdots$④ であることを証明せよ。
この動画を見る
${\Large\boxed{1}}$ $|a+b| \leqq 1$ かつ $|a-b| \leqq 1 \iff |a|+|b| \leqq 1$ を証明せよ。
${\Large\boxed{2}}$ $a,b,c$が次の条件を満たしている。
$\begin{eqnarray}
\left\{
\begin{array}{l}
-1 \leqq a+b-c \leqq 1 \cdots①\\
-1 \leqq a-b-c \leqq 1 \cdots②\\
-1 \leqq c \leqq 1 \cdots③\\
\end{array}
\right.
\end{eqnarray}$
このとき、$|a++2b| \leqq 4$ $\cdots$④ であることを証明せよ。
福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
この動画を見る
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
【高校数学】数Ⅲ-114 平均値の定理②

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ
①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$
➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$
この動画を見る
数Ⅲ(平均値の定理➁)
Q.次の不等式を平均値の定理を用いて証明せよ
①$a \gt 0$のとき$\frac{1}{a+1}\lt \log(a+1)-\log a \lt \frac{1}{a}$
➁$0\lt a \lt b$のとき$1-\frac{a}{b}\lt \log\frac{b}{a}\lt \frac{b}{a}-1$
福田の一夜漬け数学〜図形と方程式〜領域(10)対称式の問題(その2)京都大学の問題に挑戦、高校2年生

単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が条件$x^2+xy+y^2=6$ を満たしながら動くとき、
$x^2y+xy^2-x^2-2xy-y^2$$+x+y$
が取り得る値の範囲を求めよ。
この動画を見る
${\Large\boxed{1}}$ 実数$x,y$が条件$x^2+xy+y^2=6$ を満たしながら動くとき、
$x^2y+xy^2-x^2-2xy-y^2$$+x+y$
が取り得る値の範囲を求めよ。
小樽商科大 3次方程式 整数解 有理数解 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#小樽商科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
小樽商科大学過去問題
$x^3-3x-1=0$の解をα
次の(1)~(3)を示せ。
(1)αは整数でない
(2)αは有理数でない
(3)αは$p+q\sqrt3$(p,q有理数)の形ではない。
この動画を見る
小樽商科大学過去問題
$x^3-3x-1=0$の解をα
次の(1)~(3)を示せ。
(1)αは整数でない
(2)αは有理数でない
(3)αは$p+q\sqrt3$(p,q有理数)の形ではない。
福田の一夜漬け数学〜数学II 図形と方程式〜軌跡(9) 対称式の問題(その1)、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
この動画を見る
${\Large\boxed{1}}$ 実数$x,y$が$x^2+y^2 \leqq 8$ を満たしながら変化するとき
(1)点$P(x+y,xy)$の存在範囲を図示せよ。
(2)$x+y+xy$の最大値、最小値を求めよ。
早稲田 群数列の和 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
k自然数 $a_k$は$\sqrt k$にもっとも近い整数
(例)$a_5=2,a_8=3,a_{20}=4$
(1)$\displaystyle\sum_{k=1}^{12}a_k=a_1+a_2+\cdots+a_{12}$
(2)$\displaystyle\sum_{k=1}^{1998}a_k=a_1+a_2+\cdots+a_{1998}$
この動画を見る
早稲田大学過去問題
k自然数 $a_k$は$\sqrt k$にもっとも近い整数
(例)$a_5=2,a_8=3,a_{20}=4$
(1)$\displaystyle\sum_{k=1}^{12}a_k=a_1+a_2+\cdots+a_{12}$
(2)$\displaystyle\sum_{k=1}^{1998}a_k=a_1+a_2+\cdots+a_{1998}$
福田の一夜漬け数学〜図形と方程式〜領域(8)直線の通過領域(実践編2)、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\theta$が任意の実数を動くとき、直線$\ell:(\cos\theta)\ x+(\sin\theta)\ y=1$
の通過する領域を図示せよ。
この動画を見る
${\Large\boxed{1}}$ $\theta$が任意の実数を動くとき、直線$\ell:(\cos\theta)\ x+(\sin\theta)\ y=1$
の通過する領域を図示せよ。
秋田大(医)数列の和 Σ 高校数学 Mathematics Japanese university entrance exam

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数B
指導講師:
鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
この動画を見る
秋田大学過去問題
$\displaystyle\sum_{k=1}^n \frac{1}{k}(a_k+\frac{1}{k+1})=2^n+1-\frac{1}{n+1}$
(1)数列{$a_n$}の一般項をnを用いて表せ。
(2)$\displaystyle\sum_{k=1}^na_k$を求めよ。
息抜き整数問題 n^7-nは42の倍数

単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$n^7-n$は42の倍数であることを示せ(n自然数)
この動画を見る
$n^7-n$は42の倍数であることを示せ(n自然数)
【高校数学】数Ⅲ-113 平均値の定理①

単元:
#微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(平均値の定理①)
Q.次の関数$f(x)$と区間$[a,b]$に対して、条件$\frac{f(b)-f(a)}{b-a}=f'(c)$、$a\lt c\lt b$を満たす$c$の値を求めよ
①$f(x)=\frac{1}{x}$、$[2,4]$
➁$f(x)=\log x$、$[1,2]$
この動画を見る
数Ⅲ(平均値の定理①)
Q.次の関数$f(x)$と区間$[a,b]$に対して、条件$\frac{f(b)-f(a)}{b-a}=f'(c)$、$a\lt c\lt b$を満たす$c$の値を求めよ
①$f(x)=\frac{1}{x}$、$[2,4]$
➁$f(x)=\log x$、$[1,2]$
福田の一夜漬け数学〜図形と方程式〜領域(7)直線の通過領域(実践編)、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $m$が$0 \leqq m \leqq 1$の範囲を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
この動画を見る
${\Large\boxed{1}}$ $m$が$0 \leqq m \leqq 1$の範囲を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
近畿大 茨城大 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数C#茨城大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
近畿大学過去問題
$x^4-Px^2+P^2-P-2=0$が相異4実根をもつPの範囲
茨城大学過去問題
$x^3=i$を解け
この動画を見る
近畿大学過去問題
$x^4-Px^2+P^2-P-2=0$が相異4実根をもつPの範囲
茨城大学過去問題
$x^3=i$を解け
福田の一夜漬け数学〜図形と方程式〜領域(6)直線の通過領域(基本)、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $m$が全ての実数を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
この動画を見る
${\Large\boxed{1}}$ $m$が全ての実数を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
京都府立医・長崎大 三角関数 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#京都府立医科大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
京都府立医科大学
$sinx+sin2x+sin3x=cosx+cos2x$
$+cos3x$を解け
長崎大学過去問題
$0 \leqq x \leqq \pi$
cos2x+4asinx+a-2=0
相異2実根をもつaの範囲
この動画を見る
京都府立医科大学
$sinx+sin2x+sin3x=cosx+cos2x$
$+cos3x$を解け
長崎大学過去問題
$0 \leqq x \leqq \pi$
cos2x+4asinx+a-2=0
相異2実根をもつaの範囲
横市(医)弘前大 因数分解・微分 Mathematics Japanese university entrance exam

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$
弘前大学過去問題
関数y=f(x)において
$\displaystyle\lim_{x \to a}\frac{x^2f(x)-a^2f(a)}{x^2-a^2}$をa,f(a),f'(a)を用いて表せ。
この動画を見る
横浜市立大学過去問題
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$
弘前大学過去問題
関数y=f(x)において
$\displaystyle\lim_{x \to a}\frac{x^2f(x)-a^2f(a)}{x^2-a^2}$をa,f(a),f'(a)を用いて表せ。
福田の一夜漬け数学〜図形と方程式〜領域(5)正領域・負領域、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2点$O(0,0),A(1,2)$に対し、次の問いに答えよ。
(1)線分$OA$と直線$y=ax+b$ が共有点をもつような$(a,b)$を
$ab$平面上に図示せよ。
(2)線分$OA$と放物線$y=x^2+ax+b$ が共有点をもつような$(a,b)$を
$ab$平面上に図示せよ。
この動画を見る
${\Large\boxed{1}}$ 2点$O(0,0),A(1,2)$に対し、次の問いに答えよ。
(1)線分$OA$と直線$y=ax+b$ が共有点をもつような$(a,b)$を
$ab$平面上に図示せよ。
(2)線分$OA$と放物線$y=x^2+ax+b$ が共有点をもつような$(a,b)$を
$ab$平面上に図示せよ。
横浜市立(医) 3次方程式 実数解の個数 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題2004
実数解の個数
$x^3+3ax^2+3ax+a^3$
この動画を見る
横浜市立大学過去問題2004
実数解の個数
$x^3+3ax^2+3ax+a^3$
福田の一夜漬け数学〜図形と方程式〜領域(4)領域における最大最小、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 不等式$-1 \leqq y-x \leqq 1,$ $-1 \leqq x+y \leqq 1$ を満たす$x,y$に対して
(1)$x^2+y^2-3x-2y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$\displaystyle \frac{y}{x+2}$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$xy$ の最大値とそのときの$x,y$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 不等式$-1 \leqq y-x \leqq 1,$ $-1 \leqq x+y \leqq 1$ を満たす$x,y$に対して
(1)$x^2+y^2-3x-2y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$\displaystyle \frac{y}{x+2}$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$xy$ の最大値とそのときの$x,y$を求めよ。
島根大 愛知工大 整数・複素数 高校数学 Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#恒等式・等式・不等式の証明#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師:
鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
a,b,c実数
$a+b+c=3$
$ab+bc+ca \leqq 3$を示せ。
愛知工業大学過去問題
$Z=1-i$
$Z^7+Z^6+Z^5+Z^4+Z^3+Z^2+Z+1$の値
この動画を見る
島根大学過去問題
a,b,c実数
$a+b+c=3$
$ab+bc+ca \leqq 3$を示せ。
愛知工業大学過去問題
$Z=1-i$
$Z^7+Z^6+Z^5+Z^4+Z^3+Z^2+Z+1$の値
福田の一夜漬け数学〜図形と方程式〜領域(3)領域における最大最小を本当に理解する、高校2年生

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 4つの不等式$x \geqq 0,y \geqq 0,2x+y \leqq 5,$$x+2y \leqq 4$を満たす$x,y$に対して
(1)$x+y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$x+3y$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$x-y$ の最大値、最小値とそのときの$x,y$を求めよ。
この動画を見る
${\Large\boxed{1}}$ 4つの不等式$x \geqq 0,y \geqq 0,2x+y \leqq 5,$$x+2y \leqq 4$を満たす$x,y$に対して
(1)$x+y$ の最大値、最小値とそのときの$x,y$を求めよ。
(2)$x+3y$ の最大値、最小値とそのときの$x,y$を求めよ。
(3)$x-y$ の最大値、最小値とそのときの$x,y$を求めよ。
【数学】効果的かつスムーズな『チャート式』の回し方~全国模試1位の勉強法【篠原好】

単元:
#その他#勉強法#数学(高校生)
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
効果的かつスムーズな回し方
数学・理科の参考書『チャート式』の回し方についてお話しています。
この動画を見る
効果的かつスムーズな回し方
数学・理科の参考書『チャート式』の回し方についてお話しています。
慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam

単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師:
鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
