数学(高校生)
数学(高校生)
数学を数楽に

【統計分野、演習編】データを加えた時の相関係数の変化【数学b】

単元:
#確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師:
3rd School
問題文全文(内容文):
変量$x,y$の値の組
$(-1,-1),(-1,1),(1,-1),(1,1)$をデータ$W$とする。
データ$W$と$x$と$y$の相関係数は0である。
データ$W$に、新たに1個のデータを加えたときの相関係数について調べる。
なお、必要に応じて、以下の表を用いて良い。
$a$を実数とする。
データ$W$の$x$の平均値$\vec{ x }$は(ア)で、$W$の$x$と$y$の共分散の値は(イ)である。
(ア)(イ)を求めよ
この動画を見る
変量$x,y$の値の組
$(-1,-1),(-1,1),(1,-1),(1,1)$をデータ$W$とする。
データ$W$と$x$と$y$の相関係数は0である。
データ$W$に、新たに1個のデータを加えたときの相関係数について調べる。
なお、必要に応じて、以下の表を用いて良い。
$a$を実数とする。
データ$W$の$x$の平均値$\vec{ x }$は(ア)で、$W$の$x$と$y$の共分散の値は(イ)である。
(ア)(イ)を求めよ
大学入試問題#822「これ、積分で出題されるんやー」 #筑波大学(2022) #定積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$
出典:2022年筑波大学
この動画を見る
$\displaystyle \int log(x+\sqrt{ x^2+1 }) dx$
出典:2022年筑波大学
福田の数学〜慶應義塾大学2024年商学部第2問(1)〜無理数の小数第3位の数字と第4位の数字

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$
(1)$\sqrt{13}$を10進法の小数で表したとき小数第3位の数字は$\boxed{\ \ ア\ \ }$、小数第4位の数字は$\boxed{\ \ イ\ \ }$である。ただし、必要であれば$(3.606)^2$=$13.003236$ であることを用いてよい。
この動画を見る
$\Large\boxed{2}$
(1)$\sqrt{13}$を10進法の小数で表したとき小数第3位の数字は$\boxed{\ \ ア\ \ }$、小数第4位の数字は$\boxed{\ \ イ\ \ }$である。ただし、必要であれば$(3.606)^2$=$13.003236$ であることを用いてよい。
#茨城大学(2023) #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}log(\displaystyle \frac{e^x+1}{2})$
出典:2023年茨城大学
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}log(\displaystyle \frac{e^x+1}{2})$
出典:2023年茨城大学
【数学模試解説】2024年度第1回K塾マーク模試数Ⅰ,A(新課程)第一問解説

単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
第一問
[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると
$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$
である。
(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である
(2)xについての連立不等式
$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$
を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。
オ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x$
カ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$ ② $\displaystyle \frac{1}{β}\lt x$
(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。
[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき
$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$
である。
△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき
$PC=\sqrt{ソ}$
である。
また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると
$CD= タ $
であり、
$∠ADC= チツ°$
である。
直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。
太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。
$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
この動画を見る
第一問
[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると
$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$
である。
(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である
(2)xについての連立不等式
$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$
を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。
オ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x$
カ の解答群
⓪ $x\lt\displaystyle \frac{1}{α}$ ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$ ② $\displaystyle \frac{1}{β}\lt x$
(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。
[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき
$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$
である。
△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき
$PC=\sqrt{ソ}$
である。
また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると
$CD= タ $
であり、
$∠ADC= チツ°$
である。
直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。
太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。
$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
#茨城大学(2023) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3} \displaystyle \frac{x+2}{\sqrt{ x+1 }} dx$
出典:2023年茨城大学
この動画を見る
$\displaystyle \int_{0}^{3} \displaystyle \frac{x+2}{\sqrt{ x+1 }} dx$
出典:2023年茨城大学
福田のおもしろ数学141〜指数方程式の解

単元:
#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
次の式を満たす$x$を求めよ。
$40^{x-1}$=$2^{2x+1}$
この動画を見る
次の式を満たす$x$を求めよ。
$40^{x-1}$=$2^{2x+1}$
#65数検1級1次過去問「ミスれない戦い」 #極限

単元:
#関数と極限#数列の極限#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{\sqrt[ n ]{ n! }}{n}$
出典:数検1級1次過去問
この動画を見る
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{\sqrt[ n ]{ n! }}{n}$
出典:数検1級1次過去問
福田の数学〜慶應義塾大学2024年商学部第1問(4)〜不等式に関する文章題

単元:
#数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(4)ある業者は、三つの工場A, B, Cから廃棄物を回収し、その中に含まれる三つの金属P, Q, Rを取り出して新たな製品Kを作る。各工場の廃棄物から取り出されるP, Q, Rの量は以下の通りである。
・工場Aの廃棄物10 kgからPが3 kg、Qが5 kg、Rが1 kg取り出される。
・工場Bの廃棄物10 kgからPが1 kg、Qが3 kg、Rが2 kg取り出される。
・工場Cの廃棄物10 kgからPが4 kg、Qが1 kg、Rが1 kg取り出される。
また、Pが2 kgと、Qが2 kgと、Rが1 kgで製品Kが1個作られる。工場A, B, Cから合わせて200 kgの廃棄物が回収できるとき、製品Kをできるだけ多く作るには、工場Aから$\boxed{\ \ ウ\ \ }$ kg、工場Bから$\boxed{\ \ エ\ \ }$ kg、工場Cから$\boxed{\ \ オ\ \ }$ kgの廃棄物を回収すればよく、そのとき製品Kは$\boxed{\ \ カ\ \ }$個作ることができる。
この動画を見る
$\Large\boxed{1}$
(4)ある業者は、三つの工場A, B, Cから廃棄物を回収し、その中に含まれる三つの金属P, Q, Rを取り出して新たな製品Kを作る。各工場の廃棄物から取り出されるP, Q, Rの量は以下の通りである。
・工場Aの廃棄物10 kgからPが3 kg、Qが5 kg、Rが1 kg取り出される。
・工場Bの廃棄物10 kgからPが1 kg、Qが3 kg、Rが2 kg取り出される。
・工場Cの廃棄物10 kgからPが4 kg、Qが1 kg、Rが1 kg取り出される。
また、Pが2 kgと、Qが2 kgと、Rが1 kgで製品Kが1個作られる。工場A, B, Cから合わせて200 kgの廃棄物が回収できるとき、製品Kをできるだけ多く作るには、工場Aから$\boxed{\ \ ウ\ \ }$ kg、工場Bから$\boxed{\ \ エ\ \ }$ kg、工場Cから$\boxed{\ \ オ\ \ }$ kgの廃棄物を回収すればよく、そのとき製品Kは$\boxed{\ \ カ\ \ }$個作ることができる。
この間違い、今まで何回見ただろうか。

#奈良教育大学(2008) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^2} dx$
出典:2008年奈良教育大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{1}{(1+x^2)^2} dx$
出典:2008年奈良教育大学
#筑波大学(2020) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin\theta\ \cos2\theta\ d\theta$
出典:2020年筑波大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin\theta\ \cos2\theta\ d\theta$
出典:2020年筑波大学
福田のおもしろ数学140〜不等式の証明とRavi変換

単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#式と証明#恒等式・等式・不等式の証明#数学オリンピック#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$a$, $b$, $c$が三角形の3辺の長さのとき次の不等式を証明せよ。
$a^2(b+c-a)$+$b^2(c+a-b)$+$c^2(a+b-c)$≦$3abc$
この動画を見る
$a$, $b$, $c$が三角形の3辺の長さのとき次の不等式を証明せよ。
$a^2(b+c-a)$+$b^2(c+a-b)$+$c^2(a+b-c)$≦$3abc$
大学入試問題#821「王道問題」 #筑波大学(2022) #定積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} \displaystyle \frac{2x+3}{x^2+2x+4} dx$
出典:2022年筑波大学
この動画を見る
$\displaystyle \int_{0}^{2} \displaystyle \frac{2x+3}{x^2+2x+4} dx$
出典:2022年筑波大学
方程式

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$\frac{(x+1)^2+(x+3)^2+(x+5)^2+ \cdots +(x+49)^2}{x^2+(x+2)^2+(x+4)^2+ \cdots +(x+48)^2}=1$
この動画を見る
$\frac{(x+1)^2+(x+3)^2+(x+5)^2+ \cdots +(x+49)^2}{x^2+(x+2)^2+(x+4)^2+ \cdots +(x+48)^2}=1$
福田の数学〜慶應義塾大学2024年商学部第1問(3)〜不定方程式の自然数解

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(3)$a$<$b$<$c$かつ $\displaystyle\frac{1}{a}$+$\displaystyle\frac{2}{b}$+$\displaystyle\frac{3}{c}$=$2$ を満たす自然数の組($a$, $b$, $c$)をすべて求めよ。
この動画を見る
$\Large\boxed{1}$
(3)$a$<$b$<$c$かつ $\displaystyle\frac{1}{a}$+$\displaystyle\frac{2}{b}$+$\displaystyle\frac{3}{c}$=$2$ を満たす自然数の組($a$, $b$, $c$)をすべて求めよ。
#茨城大学(2023) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{(\sqrt{ x }+1)^2}{x} dx$
出典:2023年茨城大学
この動画を見る
$\displaystyle \int_{1}^{4} \displaystyle \frac{(\sqrt{ x }+1)^2}{x} dx$
出典:2023年茨城大学
#奈良教育大学(2014) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} |e^x-e| dx$
出典:2014年奈良教育大学
この動画を見る
$\displaystyle \int_{0}^{2} |e^x-e| dx$
出典:2014年奈良教育大学
大学入試問題#820「初手は見えるが、次の手は?」 #奈良教育大学(2023) #定積分

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos^3\ x}{\sqrt{ 1+\sin^2 }} dx$
出典:2023年奈良教育大学 入試問題
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos^3\ x}{\sqrt{ 1+\sin^2 }} dx$
出典:2023年奈良教育大学 入試問題
福田の数学〜慶應義塾大学2024年商学部第1問(2)〜定積分で表された関数

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(2)等式 $f(x)$=$12x^2$+$\displaystyle 6x\int_0^1f(t)dt$+$\displaystyle 2\int_0^1tf(t)dt$ を満たす関数$f(x)$を求めよ。
この動画を見る
$\Large\boxed{1}$
(2)等式 $f(x)$=$12x^2$+$\displaystyle 6x\int_0^1f(t)dt$+$\displaystyle 2\int_0^1tf(t)dt$ を満たす関数$f(x)$を求めよ。
何問わかりますか?

単元:
#算数(中学受験)#その他#その他#その他#その他#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
①$x^n+y^n=z^n$
②$PV=nRT$
③$\triangledown ・ b=0$
④縦$\times$横
⑤$t=\sqrt{ \displaystyle \frac{2s}{g} }$
⑥$s=\sqrt{ s(s-a)(s-b)(s-c) }$
⑦$y=ax+b$
⑧$\mathit{ih} \displaystyle \frac{\mathit{a \psi(r,t)}}{\mathit{at}}={-\displaystyle \frac{\hbar^2}{2m}\triangle + V(r)}\psi(r,t)$
この動画を見る
①$x^n+y^n=z^n$
②$PV=nRT$
③$\triangledown ・ b=0$
④縦$\times$横
⑤$t=\sqrt{ \displaystyle \frac{2s}{g} }$
⑥$s=\sqrt{ s(s-a)(s-b)(s-c) }$
⑦$y=ax+b$
⑧$\mathit{ih} \displaystyle \frac{\mathit{a \psi(r,t)}}{\mathit{at}}={-\displaystyle \frac{\hbar^2}{2m}\triangle + V(r)}\psi(r,t)$
#茨城大学(2020) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{3x^3+4x}{x^2+1} dx$
出典:2020年茨城大学
この動画を見る
$\displaystyle \int_{0}^{1} \displaystyle \frac{3x^3+4x}{x^2+1} dx$
出典:2020年茨城大学
#筑波大学(2018) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} x^2\cos\ x\ dx$
出典:2018年筑波大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{2}} x^2\cos\ x\ dx$
出典:2018年筑波大学
福田のおもしろ数学138〜シグマ計算

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\sum_{k=1}^nk(k!)$ を求めよ。
この動画を見る
$\displaystyle\sum_{k=1}^nk(k!)$ を求めよ。
大学入試問題#819「楽に計算したい」 #奈良教育大学(2009) #積分方程式

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$
出典:2009年奈良教育大学
この動画を見る
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$
出典:2009年奈良教育大学
福田の数学〜慶應義塾大学2024年商学部第1問(1)〜指数法則を使った計算

単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
この動画を見る
$\Large\boxed{1}$
(1)式$3(x+5)^{-\frac{5}{2}}$ の値は、$x$=$0$ のとき $\boxed{\ \ ア\ \ }$ であり、$x$=$4$ のとき $\boxed{\ \ イ\ \ }$ である。
#筑波大学(2020) #極限 #Shorts

単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{x\ \sin\ x}{1-\cos\ x}$
出典:2020年筑波大学推薦医学科
この動画を見る
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{x\ \sin\ x}{1-\cos\ x}$
出典:2020年筑波大学推薦医学科
#筑波大学(2019) #定積分 #Shorts

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#筑波大学#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} (5\cos^2\theta-3\sin^2\theta)d\theta$
出典:2019年筑波大学
この動画を見る
$\displaystyle \int_{0}^{\frac{\pi}{4}} (5\cos^2\theta-3\sin^2\theta)d\theta$
出典:2019年筑波大学
福田のおもしろ数学137〜三角関数の等式の証明

単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\displaystyle\cos\frac{\pi}{7}$+$\displaystyle\cos\frac{3\pi}{7}$+$\displaystyle\cos\frac{5\pi}{7}$=$\displaystyle\frac{1}{2}$ であることを証明せよ。
この動画を見る
$\displaystyle\cos\frac{\pi}{7}$+$\displaystyle\cos\frac{3\pi}{7}$+$\displaystyle\cos\frac{5\pi}{7}$=$\displaystyle\frac{1}{2}$ であることを証明せよ。
