平面図形
【高校受験対策/数学】死守-88
単元:
#数学(中学生)#中1数学#正の数・負の数#平方根#比例・反比例#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守88
①方程式$x^2+8x+12=0$を解きなさい。
②次のア~エの数の中で絶対値が最も大きいものを1つ選び、記号で答えなさい。
ア $2$
イ $\sqrt{3}$
ウ $-\frac{7}{3}$
エ $0$
③100gあたり$a$円の牛肉を300gと、100gあたり$b$円の豚肉を500g買ったときの代金の合計が1685円だった。
この数量の関係を等式で表しなさい。
ただし、すべての金額は消費税を含んでいるものとする。
④$y$は$x$に反比例し、$x=-4$のとき$y=2$である。
$x$と$y$の関係を式に表しなさい。
⑤図1のような平行四辺形$ABCD$において、
辺$BC$に点$E$、辺$AD$上に点$F$を、$AE=EF$、$\angle AEF=30°$となるようにとる。
$\angle x$の大きさを求めなさい。
⑥次のア~ウの四角形$ABCD$のうち、点$A,B,C,D$が1つの円周上にあるものを1つ選び、記号で答えなさい。
この動画を見る
高校受験対策・死守88
①方程式$x^2+8x+12=0$を解きなさい。
②次のア~エの数の中で絶対値が最も大きいものを1つ選び、記号で答えなさい。
ア $2$
イ $\sqrt{3}$
ウ $-\frac{7}{3}$
エ $0$
③100gあたり$a$円の牛肉を300gと、100gあたり$b$円の豚肉を500g買ったときの代金の合計が1685円だった。
この数量の関係を等式で表しなさい。
ただし、すべての金額は消費税を含んでいるものとする。
④$y$は$x$に反比例し、$x=-4$のとき$y=2$である。
$x$と$y$の関係を式に表しなさい。
⑤図1のような平行四辺形$ABCD$において、
辺$BC$に点$E$、辺$AD$上に点$F$を、$AE=EF$、$\angle AEF=30°$となるようにとる。
$\angle x$の大きさを求めなさい。
⑥次のア~ウの四角形$ABCD$のうち、点$A,B,C,D$が1つの円周上にあるものを1つ選び、記号で答えなさい。
【高校受験対策/数学】死守-87
単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策/数学】死守-87
①$3+(-5)$を計算しなさい。
➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。
③$3(x+y)-2(-x+2y)$を計算しなさい。
④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。
⑤$(3x-y)^2$を展開しなさい。
⑥$a=3$のとき、$a^2+4a$の値を求めなさい。
⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。
⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。
⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
この動画を見る
【高校受験対策/数学】死守-87
①$3+(-5)$を計算しなさい。
➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。
③$3(x+y)-2(-x+2y)$を計算しなさい。
④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。
⑤$(3x-y)^2$を展開しなさい。
⑥$a=3$のとき、$a^2+4a$の値を求めなさい。
⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。
⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。
⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
これ証明できた?
単元:
#数学(中学生)#中1数学#平面図形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】扇形の面積と弧の公式~中心角がなくても求まる方法を説明する動画です
この動画を見る
【中学数学】扇形の面積と弧の公式~中心角がなくても求まる方法を説明する動画です
【高校受験対策/数学】死守-86
単元:
#数学(中学生)#中1数学#正の数・負の数#方程式#平方根#比例・反比例#空間図形#2次関数#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守86 @1:57
①$3×(-8)$を計算しなさい。
➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。
③$-8x^3÷4x^2×(-x)$を計算しなさい。
④$\sqrt{50}+\sqrt{2}$を計算しなさい。
⑤六角形の内角の和を求めなさい。
⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。
⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。
⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。
⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。
この動画を見る
高校受験対策・死守86 @1:57
①$3×(-8)$を計算しなさい。
➁$\frac{1}{2}-\frac{5}{6}$を計算しなさい。
③$-8x^3÷4x^2×(-x)$を計算しなさい。
④$\sqrt{50}+\sqrt{2}$を計算しなさい。
⑤六角形の内角の和を求めなさい。
⑥関数$y=ax^2$について、$x$の値が$2$から$6$まで増加するときの変化の割合が$-4$である。
このとき$a$の値を求めなさい。
⑦右の図は立方体の展開図である。
この立方体において、面$A$と平行になる面を、ア~オの中から1つ選び記号で答えなさい。
⑧$-3$と$-2\sqrt{2}$の大小を、不等号を使って表しなさい。
⑨ある中学校の生徒の人数は126人で、126人全員が徒歩通学か自転車通学のいずれか一方で通学しており、
徒歩通学をしている生徒と自転車通学をしている生徒の人数の比は$5:2$である。
このとき、自転車通学をしている生徒の人数を求めなさい。
図形 中学レベル 円の基本性質の証明
【高校受験対策/数学】死守83
単元:
#数学(中学生)#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守83
①$-1-5$を計算しなさい。
②$(-3)^2+4×(-2)$を計算しなさい。
③$10xy^2÷ (-5y)×3x$を計算しなさい。
④$2x-y-\frac{5x+y}{3}$を計算しなさい。
⑤$(\sqrt{5}+3)(\sqrt{5}-2)$を計算しなさい。
⑥次の方程式を解きなさい。
$x^2=9x$
⑦$l=2\pi r$を$r$について解きなさい。
⑧正$n$角形の1つの内角が$140°$であるとき、$n$の値を求めなさい。
⑨$y$は$x$に比例し、$x=-3$のとき、$y=18$である。
$x=\frac{1}{2}$のときの$y$の値を求めなさい。
➉空間内の平面について述べた文として適切でないものを、次のア~エの中から1つ選びその記号を書きなさい。
ア 一直線上にある3点をふくむ平面は1つに決まる。
イ 交わる2直線をふくむ平面は1つに決まる。
ウ 平行な2直線をふくむ平面は1つに決まる。
エ 1つの直線とその直線上にない1点をふくむ平面は1つに決まる。
この動画を見る
高校受験対策・死守83
①$-1-5$を計算しなさい。
②$(-3)^2+4×(-2)$を計算しなさい。
③$10xy^2÷ (-5y)×3x$を計算しなさい。
④$2x-y-\frac{5x+y}{3}$を計算しなさい。
⑤$(\sqrt{5}+3)(\sqrt{5}-2)$を計算しなさい。
⑥次の方程式を解きなさい。
$x^2=9x$
⑦$l=2\pi r$を$r$について解きなさい。
⑧正$n$角形の1つの内角が$140°$であるとき、$n$の値を求めなさい。
⑨$y$は$x$に比例し、$x=-3$のとき、$y=18$である。
$x=\frac{1}{2}$のときの$y$の値を求めなさい。
➉空間内の平面について述べた文として適切でないものを、次のア~エの中から1つ選びその記号を書きなさい。
ア 一直線上にある3点をふくむ平面は1つに決まる。
イ 交わる2直線をふくむ平面は1つに決まる。
ウ 平行な2直線をふくむ平面は1つに決まる。
エ 1つの直線とその直線上にない1点をふくむ平面は1つに決まる。
中学レベル 図形問題
【高校受験対策/数学】死守82
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#資料の活用#1次関数#文字と式#平面図形#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守82
①$3-(-6)$を計算しなさい。
②$9÷(-\frac{1}{5})+4$を計算しなさい。
③$\sqrt{28}-\sqrt{7}$を計算しなさい。
④下の図のように、半径が$9cm$、中心角が$60°$のおうぎ形$OAB$があります。
このおうぎ形の弧$AB$の長さを求めなさい。
ただし円周率は$\pi$を用いなさい。
⑤右の表は、A中学校の3年生男子80人の立ち幅とびの記録を度数分布表にまと めたものです。
度数が最も多い階級の相対度数を求めなさい。
⑥関数$y=3x$のグラフに平行で、 点$(0,2)$を通る直線の式を求めなさい。
⑦右の図の四角形$ABCD$において、点$B$と点$Dが$重なるように折ったときにできる折り目の線と
辺$AB$、$BC$との交点をそれぞれ$P,Q$とします。
2点$P,Q$を定規とコンパスを使って作図しなさい。
ただし、点を示す記号$P,Q$をかき入れ、作図に用いた線は消さないこと。
この動画を見る
高校受験対策・死守82
①$3-(-6)$を計算しなさい。
②$9÷(-\frac{1}{5})+4$を計算しなさい。
③$\sqrt{28}-\sqrt{7}$を計算しなさい。
④下の図のように、半径が$9cm$、中心角が$60°$のおうぎ形$OAB$があります。
このおうぎ形の弧$AB$の長さを求めなさい。
ただし円周率は$\pi$を用いなさい。
⑤右の表は、A中学校の3年生男子80人の立ち幅とびの記録を度数分布表にまと めたものです。
度数が最も多い階級の相対度数を求めなさい。
⑥関数$y=3x$のグラフに平行で、 点$(0,2)$を通る直線の式を求めなさい。
⑦右の図の四角形$ABCD$において、点$B$と点$Dが$重なるように折ったときにできる折り目の線と
辺$AB$、$BC$との交点をそれぞれ$P,Q$とします。
2点$P,Q$を定規とコンパスを使って作図しなさい。
ただし、点を示す記号$P,Q$をかき入れ、作図に用いた線は消さないこと。
中学レベル図形問題 答えはあれではありません
【高校受験対策/数学】死守81(問題作りました)
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#平行と合同#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守81
①$81÷(-3)-(-11)$を計算しなさい。
②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$
③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$
④$311x-8y=1$を$y$について解きなさい。
⑤絶対値が$81$である数をすべて書きなさい。
⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。
⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。
⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
この動画を見る
高校受験対策・死守81
①$81÷(-3)-(-11)$を計算しなさい。
②次の式を因数分解しなさい。
$(x-2)^2-18(x-2)+81$
③次の連立方程式を解きなさい。
$3x+11y=13$
$2x-3y=19$
④$311x-8y=1$を$y$について解きなさい。
⑤絶対値が$81$である数をすべて書きなさい。
⑥右の図において2直線$l,m$は平行である。
このとき、$\angle x$の大きさを求めなさい。
⑦3点$(-3,-11)$、$(2,9)$、$(k,81)$が一直線上にあるとき、 $k$の値を求めなさい。
⑧定価$8100$円のパーカーが$a$割引で売っていた。
それを買おうとレジに持っていくと、キャンペーンだったようで、そこからさらに$500$円引きしてくれた。
このとき、パーカーを買ったときの代金を$a$を使った式で表しなさい。
ただし消費税については考えないものとする。
【高校受験対策/数学】死守-79
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#文字と式#平面図形#三角形と四角形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守79
①$-3-(-7)$を計算しなさい。
②$8a^3b^5÷4a^2b^3$を計算しなさい。
③$x^2-8x+16$を因数分解しなさい。
④$a=\frac{2b-c}{5}$を$c$について解きなさい。
⑤二次方程式$x^2+5x+2=0$を解きなさい。
⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。
⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。
平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。
ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$
⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。
⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。
ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
この動画を見る
高校受験対策・死守79
①$-3-(-7)$を計算しなさい。
②$8a^3b^5÷4a^2b^3$を計算しなさい。
③$x^2-8x+16$を因数分解しなさい。
④$a=\frac{2b-c}{5}$を$c$について解きなさい。
⑤二次方程式$x^2+5x+2=0$を解きなさい。
⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。
⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。
平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。
ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$
⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。
⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。
ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
【瞬殺30秒!頭の体操!】図形:函館ラ・サール高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#平面図形#高校入試過去問(数学)#函館ラ・サール高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 函館ラ・サール高等学校
斜線部分の面積を求めなさい。
・半径8cm、中心角90°のおうぎ形OABがある。
・OA、OBを直径とする半円を図のようにかく。
※図は動画内参照
この動画を見る
入試問題 函館ラ・サール高等学校
斜線部分の面積を求めなさい。
・半径8cm、中心角90°のおうぎ形OABがある。
・OA、OBを直径とする半円を図のようにかく。
※図は動画内参照
正三角形を4つ作るには最低何本マッチ棒が必要か? 半分 雑談
たった4という数字だけで。。。
単元:
#中1数学#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#平面図形#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
長方形の面積=?
*図は動画内参照
この動画を見る
長方形の面積=?
*図は動画内参照
【高校受験対策/数学】死守77
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守77
①$-3+(-2)$を計算しなさい。
➁$8-4÷(-2)^2$を計算しなさい。
③$5×(-5a)$を計算しなさい。
④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。
⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。
⑥$(2a-b)^2$を展開しなさい。
⑦$x^2-x-42$を因数分解しなさい。
⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。
⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。
⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。
ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
この動画を見る
高校受験対策・死守77
①$-3+(-2)$を計算しなさい。
➁$8-4÷(-2)^2$を計算しなさい。
③$5×(-5a)$を計算しなさい。
④$\frac{1}{2}x^2y÷\frac{1}{4}xy$を計算しなさい。
⑤$\sqrt{48}-\sqrt{3}$を計算しなさい。
⑥$(2a-b)^2$を展開しなさい。
⑦$x^2-x-42$を因数分解しなさい。
⑧半径が$6cm$で中心角が$45°$のおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。
⑨解が$-5,1$の2つの数となる、$x$についての2次方程式を1つ作りなさい。
⑩次のア~エのうち、数の集合と四則との関係について述べた文として正しいものをすべて選び、記号で答えなさい。
ア 自然数と自然数の加法の結果は、いつでも自然数となる。
イ 自然数と自然数の減法の結果は、いつでも整数となる。
ウ 自然数と自然数の乗法の結果は、いつでも自然数となる。
エ 自然数と自然数の除法の結果は、いつでも整数となる。
【中学数学】四角形の面積を2等分する直線のまとめ【中2数学】
単元:
#数学(中学生)#中1数学#中2数学#平行と合同#平面図形#三角形と四角形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図、点Aを通て、四角形OABCを二等分する直線の式を求めよ。
この動画を見る
動画内の図、点Aを通て、四角形OABCを二等分する直線の式を求めよ。
【裏技】〇●の二等分線の図形の問題
【高校受験対策/数学】死守75
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75
①$-8+5$を計算しなさい。
②$1+3×-(\frac{2}{7})$を計算しなさい。
③$2(a+4b)+3(a-2b)$を計算しなさい。
④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。
⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。
⑥次の式を因数分解しなさい。
$9x^2-4y^2$
⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。
⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。
直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る
高校受験対策・死守75
①$-8+5$を計算しなさい。
②$1+3×-(\frac{2}{7})$を計算しなさい。
③$2(a+4b)+3(a-2b)$を計算しなさい。
④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。
⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。
⑥次の式を因数分解しなさい。
$9x^2-4y^2$
⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。
⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。
直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
図形の問題でこんなオチが待っているとは。。。
単元:
#算数(中学受験)#数学(中学生)#中1数学#平面図形#図形の移動#平面図形その他#平面図形
指導講師:
数学を数楽に
問題文全文(内容文):
4つの合同な長方形
長方形の面積は?
*図は動画内参照
この動画を見る
4つの合同な長方形
長方形の面積は?
*図は動画内参照
【図形】この問題すごくない?
単元:
#算数(中学受験)#数学(中学生)#中1数学#平面図形#図形の移動#平面図形その他#平面図形
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
図形問題 解説動画です
この動画を見る
図形問題 解説動画です
【高校受験対策/数学】死守74
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守74
①$6-17$を計算しなさい。
②$6÷(-\frac{2}{3})$を計算しなさい。
③$2x+3y-(\frac{x+5y}{2})$を計算しなさい。
④$(\sqrt{3}+1)(\sqrt{3}-3)$を計算しなさい。
⑤ 下の図のような、平行四辺形$ABCD$がある。このとき$\angle x$の大きさを求めなさい。
⑥右の図のように、1辺の長さが$4cm$の立方体にちょうど入る大きさの球がある。
この球の体積を求めなさい。
⑦$am$のリボンから$bm$切り取ると、残りのリボンの長さは$2m$より短い。
この数量の関係を不等式で表しなさい。
⑧ある小学校で、工場の見学に行くために電車を利用することになった。
通常は児童15人と先生2人が支払う運賃の合計が9100円になる。
しかし、児童が10人以上いるとき児童の運賃のみが4割引きになる。
このため、児童15人と先生2人の運賃との合計は6100円になった。
このとき、割引きされた後の児童1人分の運賃を求めなさい。
この動画を見る
高校受験対策・死守74
①$6-17$を計算しなさい。
②$6÷(-\frac{2}{3})$を計算しなさい。
③$2x+3y-(\frac{x+5y}{2})$を計算しなさい。
④$(\sqrt{3}+1)(\sqrt{3}-3)$を計算しなさい。
⑤ 下の図のような、平行四辺形$ABCD$がある。このとき$\angle x$の大きさを求めなさい。
⑥右の図のように、1辺の長さが$4cm$の立方体にちょうど入る大きさの球がある。
この球の体積を求めなさい。
⑦$am$のリボンから$bm$切り取ると、残りのリボンの長さは$2m$より短い。
この数量の関係を不等式で表しなさい。
⑧ある小学校で、工場の見学に行くために電車を利用することになった。
通常は児童15人と先生2人が支払う運賃の合計が9100円になる。
しかし、児童が10人以上いるとき児童の運賃のみが4割引きになる。
このため、児童15人と先生2人の運賃との合計は6100円になった。
このとき、割引きされた後の児童1人分の運賃を求めなさい。
【高校受験対策/数学】死守73
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守73
①$-9+(-8)$を計算しなさい。
②$\frac{3}{4}÷-(\frac{5}{6})$を計算しなさい。
③$2(a+46)-(-3a+7b) を計算しなさい。
④$\sqrt{12}×\sqrt{2}÷\sqrt{6}$を計算しなさい。
⑤二次方程式$3x^2-x-1=0$を解きなさい。
⑥連立方程式を解きなさい。
$2x+3y=20$
$4y=x+1$
⑦2つのさいころを同時に投げるとき、出る目の和が8に ならない確率を求めなさい。
ただし、どの目が出ることも同様に確からしいとする。
⑧右の図のように、線分$OA$、$OB$がある。
$\angle AOB$の二等分線上にあり、2点$O,B$から等しい距離にある点$P$を、コンパスと定規を使って作図しなさい。
この動画を見る
高校受験対策・死守73
①$-9+(-8)$を計算しなさい。
②$\frac{3}{4}÷-(\frac{5}{6})$を計算しなさい。
③$2(a+46)-(-3a+7b) を計算しなさい。
④$\sqrt{12}×\sqrt{2}÷\sqrt{6}$を計算しなさい。
⑤二次方程式$3x^2-x-1=0$を解きなさい。
⑥連立方程式を解きなさい。
$2x+3y=20$
$4y=x+1$
⑦2つのさいころを同時に投げるとき、出る目の和が8に ならない確率を求めなさい。
ただし、どの目が出ることも同様に確からしいとする。
⑧右の図のように、線分$OA$、$OB$がある。
$\angle AOB$の二等分線上にあり、2点$O,B$から等しい距離にある点$P$を、コンパスと定規を使って作図しなさい。
すべての辺の長さが等しい正四角錐
単元:
#数学(中学生)#中1数学#立体図形#立体図形その他#平面図形#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
すべての辺の長さが等しい正四角錐
$\angle BAD$は何度?
(1) 60°
(2) 90°
(3) 120°
(4) 実は求められないよ
川端高校
この動画を見る
すべての辺の長さが等しい正四角錐
$\angle BAD$は何度?
(1) 60°
(2) 90°
(3) 120°
(4) 実は求められないよ
川端高校
【思考力を高める5分間!一度は解きたい!】図形:日本大学習志野高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#中2数学#相似な図形#平面図形#高校入試過去問(数学)#日本大学習志野高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学習志野高等学校
6個の正方形を 並べてできた 長方形において、
$\angle x+ \angle y=$▬度である。
四角部分の角度を求めよ。
※図は動画内参照
この動画を見る
入試問題 日本大学習志野高等学校
6個の正方形を 並べてできた 長方形において、
$\angle x+ \angle y=$▬度である。
四角部分の角度を求めよ。
※図は動画内参照
【条件を見定めて瞬殺!理解度チェック!】図形:日本大学第三高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#平面図形#高校入試過去問(数学)#日本大学第三高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学第三高等学校
$\angle x \angle y$
の大きさを求めよ。
図のように 正方形ABCD、 正三角形ABE が重なっている。
※図は動画内参照
この動画を見る
入試問題 日本大学第三高等学校
$\angle x \angle y$
の大きさを求めよ。
図のように 正方形ABCD、 正三角形ABE が重なっている。
※図は動画内参照
【高校受験対策/数学】死守72
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#平行と合同#確率#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守72
①$2-6$を計算しなさい。
➁$-3×(-2^2)$を計算しなさい。
③$\frac{2a+b}{ 3 }+\frac{a-b}{ 2 }$を計算しなさい。
④$xy^2×x^2÷xy$を計算しなさい。
⑤$\frac{6}{\sqrt{3}}+\sqrt{15}×\sqrt{5}$を計算しなさい。
⑥2次方程式$x^2+7x-18=0$ を解きなさい。
⑦$a=\sqrt{5}+3$のとき、$a^2-6a+9$の値を求めなさい。
⑧500円、100円、50円の硬貨が1枚ずつある。
この3枚を同時に1回投げるとき、表が出た硬貨の合計金額が500円以下になる確率を求めなさい。
ただし3枚の硬貨のそれぞれについて、表と裏の出方は同様に確からしいとする。
⑨右の図は底面の半径が$3cm$、側面になるおうぎ形の半径が$5cm$の円錐の展開図である。
これを組み立ててできる円錐の体積を求めなさい。
この動画を見る
高校受験対策・死守72
①$2-6$を計算しなさい。
➁$-3×(-2^2)$を計算しなさい。
③$\frac{2a+b}{ 3 }+\frac{a-b}{ 2 }$を計算しなさい。
④$xy^2×x^2÷xy$を計算しなさい。
⑤$\frac{6}{\sqrt{3}}+\sqrt{15}×\sqrt{5}$を計算しなさい。
⑥2次方程式$x^2+7x-18=0$ を解きなさい。
⑦$a=\sqrt{5}+3$のとき、$a^2-6a+9$の値を求めなさい。
⑧500円、100円、50円の硬貨が1枚ずつある。
この3枚を同時に1回投げるとき、表が出た硬貨の合計金額が500円以下になる確率を求めなさい。
ただし3枚の硬貨のそれぞれについて、表と裏の出方は同様に確からしいとする。
⑨右の図は底面の半径が$3cm$、側面になるおうぎ形の半径が$5cm$の円錐の展開図である。
これを組み立ててできる円錐の体積を求めなさい。
【高校受験対策/数学】死守71
単元:
#数学(中学生)#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守71
①$8÷4+6$を計算せよ。
②$\frac{1}{2}+\frac{9}{10}×\frac{5}{3}$を計算せよ。
④$y$は$x$に反比例し、$x=2$のとき$y=-3$である。
このとき、$y$を$x$の式で表せ。
⑤次の比例式で、$x$の値を求めよ。
$x:(4x-1)=1:x$
⑥$\sqrt{7}$より大きく$\sqrt{31}$より小さい整数をすべて書け。
⑦3つの数$a$、$b$、$c$について、$ab \lt 0$、$abc \gt 0$のとき、$a$、$b$、$c$の符号の組み合わせとして、
最も適当なものを下のア~エの中から1つ選び、記号で答えよ。
※図は動画参照
⑧次のように、1から6までの数字がくり返し並んでいる。
左から100番目の数字は何か。
1、2、3、4、5、6、1、2、3、4、5、6、1、2・・・
⑨右の図のように、$AB=AC$である。
二等辺三角形$ABC$と、頂点$A$、$C$をそれぞれ通る2本の平行な直線$l$、$m$がある。
このときの$\angle x$大きさは何度か。
この動画を見る
高校受験対策・死守71
①$8÷4+6$を計算せよ。
②$\frac{1}{2}+\frac{9}{10}×\frac{5}{3}$を計算せよ。
④$y$は$x$に反比例し、$x=2$のとき$y=-3$である。
このとき、$y$を$x$の式で表せ。
⑤次の比例式で、$x$の値を求めよ。
$x:(4x-1)=1:x$
⑥$\sqrt{7}$より大きく$\sqrt{31}$より小さい整数をすべて書け。
⑦3つの数$a$、$b$、$c$について、$ab \lt 0$、$abc \gt 0$のとき、$a$、$b$、$c$の符号の組み合わせとして、
最も適当なものを下のア~エの中から1つ選び、記号で答えよ。
※図は動画参照
⑧次のように、1から6までの数字がくり返し並んでいる。
左から100番目の数字は何か。
1、2、3、4、5、6、1、2、3、4、5、6、1、2・・・
⑨右の図のように、$AB=AC$である。
二等辺三角形$ABC$と、頂点$A$、$C$をそれぞれ通る2本の平行な直線$l$、$m$がある。
このときの$\angle x$大きさは何度か。
【一度は解きたい!三角形と円を見つめる5分間】図形:法政大学第二高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#中3数学#円#平面図形#高校入試過去問(数学)#法政大学第二高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学第二高等学校
直角三角形の3辺の長さの和が36cm
すべての辺に接する円の半径が3cmである
斜辺の長さを求めなさい。
※図は動画内参照
この動画を見る
入試問題 法政大学第二高等学校
直角三角形の3辺の長さの和が36cm
すべての辺に接する円の半径が3cmである
斜辺の長さを求めなさい。
※図は動画内参照
【まずは3分!先を見通せる力!】図形:専修大学附属高等学校~全国入試問題解法
単元:
#数学(中学生)#中1数学#中3数学#円#平面図形#高校入試過去問(数学)#専修大学附属高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 専修大学附属高等学校
$\angle x$ の大きさを求めなさい。
ただし、点Oは 円の中心である。
※図は動画内参照
この動画を見る
入試問題 専修大学附属高等学校
$\angle x$ の大きさを求めなさい。
ただし、点Oは 円の中心である。
※図は動画内参照
【3分で別解まで分かる!】図形:長崎県~全国入試問題解法
単元:
#数学(中学生)#中1数学#平面図形#高校入試過去問(数学)#長崎県公立高校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 長崎県の公立高校
$\angle x$の大きさを求めよ。
図において、$l$と$m$は平行である。
※図は動画内参照
この動画を見る
入試問題 長崎県の公立高校
$\angle x$の大きさを求めよ。
図において、$l$と$m$は平行である。
※図は動画内参照