円 - 質問解決D.B.(データベース) - Page 6

【高校受験対策】数学-死守26

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#確率#円#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-3+8$を計算しなさい.

②$2(2x - y) - (x - y)$を計算しなさい.

③$\sqrt{27}-\sqrt{63}$を計算しなさい.

④$(x + 5)(x - 3)$を展開しなさい.

⑤$a(b + 8) - (b + 8)$を因数分解しなさい.

⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.

⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.

⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.

⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.

⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.

図は動画内参照
この動画を見る 

【高校受験対策】数学-図形16

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,円$O$の周上に4点,$A,B,C,D$がある.
円$O$の直径$AC$と,線分$BD$との交点を$E$とし,
線分$AD$上に$AB//FE$となる点$F$をとる.
また,$AB = 6\sqrt 3cm,AC = 12cm,AD=9cm,\angle ADB = 60°$とする.
次の各問いに答えなさい.

①線分$BC$の長さを求めなさい.

②$DF= a cm$とするとき,$EF$の長さを$a$の式で表しなさい.

③$△BCD∞△AFE$を証明しなさい.

④図の$\Box$の部分の面積を求めなさい.
ただし,円周率は$\pi$とする.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守25

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#文章題#文章題その他#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-4-8$を計算しなさい.

②$\dfrac{1}{3}-\dfrac{3}{7}$を計算しなさい.

③$\sqrt{50}-\sqrt{32}$を計算しなさい.

④2次方程式$x^ 2 - 5x + 2 = 0$を解きなさい.

⑤図1のように,四角形$ABCD$の3つの頂点における外角が
わかっているとき,$\angle x$の大きさを求めなさい.

⑥図2のような半径$6cm$の半球の表面積と体積を求めなさい.
ただし,円周率は$\pi$とする.

⑦右の表は,あるクラスの1日の家庭での学習時間を
度数分布表にまとめたものである.
この表から$\Box$にあてはまる数と最頻値(モード) を求めなさい.

⑧ある家庭では,昨年1月の電気代と水道代の1日当たりの合計額は530円だった.
その後,家族で節電・節水を心がけたため,今年1月の1日当たりの額は,
昨年1月と比較して電気代は15%,水道代は10%減り,
1日当たりの合計額は460円となった.
昨年1月の1日当たりの電気代と水道代はそれぞれ何円か,求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守24

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#円#立体図形#立体切断#立体図形その他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-7+9$を計算しなさい.

②$1+\left(-\dfrac{5}{6}\right)\div \dfrac{1}{3}$を計算しなさい.

③$8(x - y) + 6(x - 2y)$を計算しなさい.

④$\sqrt{27} - \dfrac{6}{\sqrt3}$を計算しなさい.

⑤$x(x + 2) - (x + 4)(x - 3)$を計算しなさい.

⑥絶対値が$2.5$より小さい整数はいくつあるか,求めなさい.

⑦2つの方程式$3x + y = 11$と$x + 3y = 1$両方にあてはまる$x,y$の値の組がある.
このとき,$x^2-y^2$の値を求めなさい.

⑧右の図のおうぎ形$OAB$は,半径$3cm$,中心角$90°$である.
このおうぎ形$OAB$を, $AD$を通る直線$\ell$を軸として1回転させてできる
立体の体積と表面積を求めなさい.
ただし,円周率は$\pi$とする.

⑨右の表は,ある中学校における男子15人の50m走の記録を
度数分布表に表したものである.
この表の8.5秒以上9.0秒未満の階級の相対度数を求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-図形15

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①図1のように,$\stackrel{\huge\frown}{AB}$上に$\stackrel{\huge\frown}{AP}$と$\stackrel{\huge\frown}{PB}$の長さの比が$5:4$となるように
点$P$をとるとき,$\angle PAB$の大きさを求めなさい.

②図2のように,$AB$を直径とする円の周上に点$C$をとり,
直径$AB$を$B$の方に延長した直線上に点$D$をとります.
$CD =\dfrac{1}{2}AB,\angle BCD = 27°$のとき,
$\angle CAB$の大きさ$x$を求めなさい.

③図3で,線分$AB$は円$O$の直径で,
2点$C,D$は円$O$の周上にあり,$BC \perp OD$である.
また,点$E$は2直線$AC,BD$の交点である.
$\angle OBC=a°$のとき,$\angle CED$の大きさを$a$を用いて表せ.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守21

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-証明6

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,線分$AB$を直径とする円$O$の円周上に,点$C$をとります.
円$O$と,$CO$の延長との交点を$D$とし,
点$C$を通る円$O$の接線と$\angle BOC$の二等分線との交点を$E$とします.
このとき,次の問いに答えなさい.

①$OB=4cm, \angle BOD = 120°$のとき,
線分$BD$の長さを求めなさい.

②$△ABC ∞ OEC$を証明しなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-死守16

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$-4+(-3)$を計算しなさい.

②$-\dfrac{1}{7}+\dfrac{2}{5}$を計算しなさい.

③$16ab^2 \div 8ab$を計算しなさい.

④$\sqrt{54}-\dfrac{42}{\sqrt6}$を計算しなさい.

⑤$(x+2)(x+3)-(x+4)^2$を計算しなさい.

⑥$(x-5)^2-7(x-5)+12$を因数分解しなさい.

⑦2次方程式$5x^2-3x-1=0$を解きなさい.

⑧$x=3-\sqrt7$のとき,
$x^2-6x+9$の値を求めなさい.

⑨関数$y=ax^2$について,
$x$の値が$-3$から$-1$まで増加するときの変化の割合が$-3$であった.
このとき,$a$の値を求めなさい.

⑩1から6までの目の出る大,小2つのさいころを同時に1回投げるとき,
出た目の数の和が9以上とならない確率を求めなさい.

⑪半径が$2cm$である球の体積を$Pcm^3$,l
半径が$3cm$である球の体積を$Qcm^3$とするとき,
$P$と$Q$の比を最も簡単な整数の比で表しなさい。.
ただし,円周率は$\pi$とする.

⑫ 右の図において,線分$AB$は円$O$の直径であり,
2点$C,D$は円$O$の周上の点である.
このとき,$△ABC$の大きさを求めなさい.
この動画を見る 

【高校受験対策】数学-死守14

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#円#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$(2x - 1) - 5(x + 1)$ を計算しなさい.

②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.

③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.

④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$

⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.

⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.

⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.

⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.

⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.

⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守13

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$3-(-2)$を計算しなさい.

②$(-3)^2+5\times (-1)$を計算しなさい.

③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.

④$(-4a^2)\times 18b \div 9ab$を計算しなさい.

⑤$(\sqrt3 + 1)^2$を計算しなさい.

⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.

⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$

⑧2次方程式$(x-2)^2=81$を解きなさい.

⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.

⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.

⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.

⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守11

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$(-2)\times (-3)+4$を計算しなさい.

②$\dfrac{2}{5}a+\dfrac{1}{3}a$を計算しなさい.

③$4(x+2y)-(6x+9y)$を計算しなさい.

④$5xy^2\times 7xy \div (-x)^2$を計算しなさい.

⑤$(\sqrt{2}+1)^2-\sqrt8$を計算しなさい.

⑥$x$についての2次方程式$x^2+ax-12=0$の解の一つが
$-2$であるとき,もう一つの解を求めなさい.

⑦右の図1のような半径$9cm$の半球があります.
この半球と等しい体積の円錐について考えます.
円錐の底面の半径が$9cm$であるとき,円錐の高さは何$cm$か求めなさい.

⑧右の図2は,ある学校の3年生50人の通学時間を調査し,
ヒストグラムに表したもので,平均値は$16.3$分でした.
下のアから工までの中から,
このヒストグラムからわかることについて正しく述べたものを1つ選び,
記号で答えなさい.

ア 通学時間の範囲は,16分である.

イ 通学時間の最頻値は,平均値よりも大きい.

ウ 通学時間の中央値が含まれる階級は,15分以上20分未満の階級である.

工 通学時間が20分以上25分未満の階級の相対度数は,$0.16$である.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守7

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守6

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#比例・反比例#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$5-7$

②$- 6 + 9 \div \dfrac{1}{4}$

③$3\sqrt2\times \sqrt8$

④$2(2a-3b)+(a-5b)$

2.次の問いに答えなさい.

⑤右の図1のように,線分$AB$を直径とする円があります.
円の中心$O$を定規とコンパスを使って作図しなさい.
ただし,点を示す記号$O$をかき入れ,作図に用いた線は消さないこと.

⑥右の図2のような反比例の関係$y =\dfrac{a}{x}$のグラフがあります.
点$O$は原点とします.$a$の値を求めなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5 \\
y=4x-1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧二次方程式$x^2+5x+1=0$を解きなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-図形12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のような,線分$AB,AC,BC$を
それぞれ直径とする半円を組み合わせた図形があり,
$AB=12cm$,点$C$は線分$AB$の中点である.
このとき,次の各問いに答えよ. ただし,円周率は$\pi$とする.

(1)影をつけた部分の図形について,次の各問いに答えよ.

①面積を求めよ.

②周の長さを求めよ.

(2)右の図2のように,線分$AB$を直径とする半円の弧上に点$P$,
線分$BC$を直径とする半円の弧上に点$Q$をとり,
点$B$と$P$,点$C$と$P$,点$C$と$Q$をそれぞれ結ぶ.
このとき,次の各問いに答えよ.

①$\angle PBC = 65°$とのとき,影をつけた部分の面積を求めよ.

②$\angle PCQ = 90°$のとき,
$\stackrel{\huge\frown}{QB}$と$\stackrel{\huge\frown}{BP}$の長さの和を求めよ.
この動画を見る 

【高校受験対策】数学-証明5

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,円$O$の円周上に3点$A,B,C$があり,
$\angle AOC = 90°$である.
点$B$における円$O$の接線と線分$OC$の延長との交点を$D$とし,
線分$OA$の延長上に$EO=OD$となるように点$E$をとる.
点$E$から直線$OB$に垂線をひき,
直線$OB$との交点を$F$とする.
これについて,次の各問いに答えなさい.

①$EF=OB$であることを証明しなさい.

②円の半径が$3\sqrt 2 cm$,
四角形$AOCB$の面積が$11 cm^2$のとき,
点$B$と直線$AC$との距離を求めなさい.

図は動画内を参照
この動画を見る 

【受験対策】数学-証明4

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,円$O$に正三角形$ABC$が内接している.
点$C$をふくまない側にある孤$AB$上に点$D$をとり,
$△ADB$をつくる.
線分$CD$をひき,線分$AB$との交点を$E$とし,
線分$CD$上に$AD=CF$となる点$F$をとる.
線分$BF$を延長した直線と線分$AC$,円$O$との交点を
それぞれ$G,H$とする.
このとき,次の各問いに答えなさい.
ただし,点$H$は点$B$と異なる点とする .

①$△ADB\equiv △CFB$を証明しなさい.

②$\triangle BFE \sim \triangle CHG$を証明しなさい.

図は動画内参照
この動画を見る 

【中1 P.164】6編の力だめし

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【中1 P.164】6編の力だめし解説していきます.
この動画を見る 

【受験対策】 数学-図形⑥

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図で、四角形ABCDは、AB=7cm、BC=4cmの長方形です。
この長方形を辺ABを軸として1回転させてできる立体の表面積を 求めよう。
ただし、円周率をπとする。

② 右の図のように、正五角形ABCDEの頂点、B、Dを通る直線をそれぞれℓ,mとする。ℓ//mであるとき、∠xの大きさを求めよう。

③右の図は、立方体の展開図である。
この展開図を組み立てて立方体をつくるとき、面アと垂直になる面を、 面イ~カからすべて選ぼう。

※図は動画内参照
この動画を見る 

【数学】中3-65 三平方・平面図形への利用③(円とのコラボ編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①中心Oから弦ABまでの距離は?

②弦ABの長さは?

③ℓが円Oの接線のとき、円Oの半径は?

④ℓが円Oの接線のとき、APの長さは?
※図は動画内参照
この動画を見る 

【数学】中3-59 円周角の証明チャレンジ Lv.1

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle ABD=\angle CBD$のとき、$\triangle ABE ∞ \triangle DBC$であることを証明しよう。($\boxed{1}~\boxed{7}$)

$\boxed{1}$____________で
$\boxed{2}$____より$\boxed{3}$________…①
$\boxed{4}$____________ので
  $\boxed{5}$____________…②
①,②$\boxed{6}$____________ので
  $\boxed{7}$____________

⑧AB=5cm,BC=8cm,BE=4cmのときDEの長さは?
この動画を見る 

【数学】中3-60 円周角の証明チャレンジ Lv.2

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$AB=CD$のとき、$\triangle ABE \equiv \triangle DCE$
であることを証明しよう!($\boxed{1}~\boxed{9}$)

$\boxed{1}$____________で
$\boxed{2}$____より$\boxed{3}$________…①
$\boxed{4}$____________ので
  $\boxed{5}$____________…②
$\boxed{6}$____________ので
  $\boxed{7}$____________…③
①,②,③より$\boxed{8}$____________ので
$\boxed{9}$_________________

⑩円Oの半径が9cm,$\angle BDC=40°$のとき
$\stackrel{\huge\frown}{BC}$(点A,Dを含まない方)の長さは?
※図は動画内参照
この動画を見る 

【数学】中3-58 円周角の定理③(もっと応用編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle x,\angle y $を求めよう!
(①,②のℓ,mは円0の接続線)
※図は動画内参照
この動画を見る 

【数学】中3-57 円周角の定理②(少し応用編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle x,\angle y $を求めよう!
※図は動画内参照
この動画を見る 

【数学】中3-56 円周角の定理①(基本編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\angle x,\angle y $を求めよう!
※図は動画内参照
この動画を見る 
PAGE TOP