中3数学
放物線と二等辺三角形 国立高専
単元:
#数学(中学生)#中3数学#数A#図形の性質#三平方の定理#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$y=\frac{1}{4}x^2$
P=?
*図は動画内参照
国立高専
この動画を見る
$y=\frac{1}{4}x^2$
P=?
*図は動画内参照
国立高専
佐賀県立高校入試2022年5⃣相似(4)~(6)
単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年5⃣相似(4)~(6)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(4) 線分ADの長さを求めなさい。
(5) 線分EFの長さを求めなさい。
(6) △AFEの面積を求めなさい。
この動画を見る
佐賀県立高校入試2022年5⃣相似(4)~(6)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(4) 線分ADの長さを求めなさい。
(5) 線分EFの長さを求めなさい。
(6) △AFEの面積を求めなさい。
佐賀県立高校入試2022年5⃣相似(1)~(3)
単元:
#数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年5⃣相似(1)~(3)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(1) ∠ABCの大きさを求めなさい。
(2) △ACD$\backsim$△AFEであることを証明しなさい。
(3) 線分OO'と線分CDの長さの比を、最も簡単な整数の比で表しなさい。
この動画を見る
佐賀県立高校入試2022年5⃣相似(1)~(3)
-----------------
動画内の図のように、半径が5cmの円Oと、半径が円Oの半径よりも短い円O'があり、円O'の中心は円Oの周上にある。
2つの円の交点をA、Bとし、AB=6cmとする。
円Oの周上に線分ACが円Oの直径となるように点Cをとり、直線CBと円O'との交点のうち点Bと異なる点をDとする。
また、円O'の周上にAE=6cmとなるように点Eをとり、直線EBと円Oとの交点のうち点Bと異なる点をFとする。ただし、点Eは点Bと異なる点とする。
(1) ∠ABCの大きさを求めなさい。
(2) △ACD$\backsim$△AFEであることを証明しなさい。
(3) 線分OO'と線分CDの長さの比を、最も簡単な整数の比で表しなさい。
福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円
単元:
#数A#大学入試過去問(数学)#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。
2020慶應義塾大学総合政策学部過去問
この動画を見る
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。
2020慶應義塾大学総合政策学部過去問
大阪大 無理数の無理数乗=有理数
単元:
#数学(中学生)#中3数学#平方根
指導講師:
鈴木貫太郎
問題文全文(内容文):
(1)$\log_3 4$は無理数であることを証明せよ.
(2)a,bは無理数で$a^b$が有理数であるような数の組a,bを求めよ.
大阪大過去問
この動画を見る
(1)$\log_3 4$は無理数であることを証明せよ.
(2)a,bは無理数で$a^b$が有理数であるような数の組a,bを求めよ.
大阪大過去問
【中学数学】三平方の定理の証明~一緒にしよう~【中3数学】
佐賀県立高校入試2022年4⃣関数(5)
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年4⃣関数(5)
-----------------
点Bを通り$x$軸に平行な直線と、原点と点Aを通る直線との交点をDとする。
また、点Dを通り、傾き-1の直線を$m$とし、直線$l$と直線$m$との交点をEとする。
このとき、(ア)~(ウ)の各問いに答えなさい。
(ア)直線$m$の式を求めなさい。
(イ)△BDEの面積を求めなさい。
(ウ)△ACDの面積を$S$.△BDEの面積を$T$とするとき、$S:T$を最も簡単な整数の比で表しなさい。
この動画を見る
佐賀県立高校入試2022年4⃣関数(5)
-----------------
点Bを通り$x$軸に平行な直線と、原点と点Aを通る直線との交点をDとする。
また、点Dを通り、傾き-1の直線を$m$とし、直線$l$と直線$m$との交点をEとする。
このとき、(ア)~(ウ)の各問いに答えなさい。
(ア)直線$m$の式を求めなさい。
(イ)△BDEの面積を求めなさい。
(ウ)△ACDの面積を$S$.△BDEの面積を$T$とするとき、$S:T$を最も簡単な整数の比で表しなさい。
高等学校入学試験予想問題:洛南高等学校~全部入試問題
単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?
$ \boxed{2}$
図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.
$ \boxed{3}$
図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
この動画を見る
$ \boxed{1}$
(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?
$ \boxed{2}$
図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.
$ \boxed{3}$
図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
高校入試の早解きルートを30秒でモノにするショート~全国入試問題解法 #Shorts #数学 #高校入試
単元:
#数学(中学生)#中2数学#中3数学#1次関数#2次関数#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
xの変域が$ o\leqq x \leqq 6 $のとき,yの変域が等しく,この関数のグラフは1点で交わる.
この交点を反比例$ y=\dfrac{c}{x}$のグラフが通るとき,$ c $の値を求めよ.
和洋国府台女子高校過去問
この動画を見る
xの変域が$ o\leqq x \leqq 6 $のとき,yの変域が等しく,この関数のグラフは1点で交わる.
この交点を反比例$ y=\dfrac{c}{x}$のグラフが通るとき,$ c $の値を求めよ.
和洋国府台女子高校過去問
高等学校入学試験予想問題:明治学院高等学校~全部入試問題
単元:
#数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.
$ \boxed{2}$
放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.
$ \boxed{3}$
図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る
$ \boxed{1}$
(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.
$ \boxed{2}$
放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.
$ \boxed{3}$
図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
佐賀県立高校入試2022年④関数(1)~(4)
単元:
#数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年④関数(1)~(4)
-----------------
関数$y=ax^2$・・・①のグラフ上に2点A、Bがある。
点Aの座標は(-4.-8)であり、点Bの$x$座標は2である。
また、2点A、Bを通る直線を$l$とし、直線$l$と$y$軸との交点をCとする。
(1)aの値を求めなさい。
(2)関数①のグラフを動画内のア~エの中から1つ選び、記号を書きなさい。
(3) 点Bの$y$座標を求めなさい。
(4) 点Cの座標を求めなさい。
この動画を見る
佐賀県立高校入試2022年④関数(1)~(4)
-----------------
関数$y=ax^2$・・・①のグラフ上に2点A、Bがある。
点Aの座標は(-4.-8)であり、点Bの$x$座標は2である。
また、2点A、Bを通る直線を$l$とし、直線$l$と$y$軸との交点をCとする。
(1)aの値を求めなさい。
(2)関数①のグラフを動画内のア~エの中から1つ選び、記号を書きなさい。
(3) 点Bの$y$座標を求めなさい。
(4) 点Cの座標を求めなさい。
高等学校入学試験予想問題:近畿大学附属高等学校~全部入試問題
単元:
#数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#2次関数#円
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$
$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.
$ \boxed{2}$
図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.
$ \boxed{3}$
図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
この動画を見る
$ \boxed{1}$
(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$
$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.
$ \boxed{2}$
図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.
$ \boxed{3}$
図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
【中学数学】三平方の定理の基礎~使い方~【中3数学】
佐賀県立高校入試2022年数学2⃣二次方程式
単元:
#数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)#佐賀県立高校
指導講師:
重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学2⃣二次方程式
-----------------
(ア)
動き始めてから1秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(イ)
動き始めてから3秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(ウ)
動き始めて2秒後から4秒後までについて考える。
このとき、△ABCと正方形DEFGが重なってできる部分の面積が1cm²となるのは、動き始めてから何秒後か求めなさい。
ただし、動き始めてからの時間を$x$秒として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
この動画を見る
佐賀県立高校入試2022年数学2⃣二次方程式
-----------------
(ア)
動き始めてから1秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(イ)
動き始めてから3秒後について、△ABCと正方形DEFGが重なってできる部分の面積を求めなさい。
(ウ)
動き始めて2秒後から4秒後までについて考える。
このとき、△ABCと正方形DEFGが重なってできる部分の面積が1cm²となるのは、動き始めてから何秒後か求めなさい。
ただし、動き始めてからの時間を$x$秒として$x$についての方程式をつくり、答えを求めるまでの過程も書きなさい。
2023高校入試解説21問目 2通りで解説!!座標平面上の円 久留米大附設
単元:
#数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
円とy軸との交点のy座標を全て求めよ
*図は動画内参照
2023久留米大学附設高等学校(改)
この動画を見る
円とy軸との交点のy座標を全て求めよ
*図は動画内参照
2023久留米大学附設高等学校(改)
三平方の定理の裏技教えてみた
数学の概要を一気につかむ音楽~全国入試問題解法 #shorts #数学 #高校入試 #sound
単元:
#数学(中学生)#中2数学#中3数学#2次方程式#三角形と四角形#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.
慶応志木高校過去問
この動画を見る
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.
慶応志木高校過去問
図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~
単元:
#数学(中学生)#中3数学#2次方程式#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師:
【楽しい授業動画】あきとんとん
問題文全文(内容文):
図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~
この動画を見る
図で理解する2次方程式の解の公式~ほーみんに数学教えてみた~
【スバラ式 解法!】因数分解:青雲高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ (2x+1)^2-3(x-1)(x+2)-27$を因数分解せよ.
青雲高校過去問
この動画を見る
$ (2x+1)^2-3(x-1)(x+2)-27$を因数分解せよ.
青雲高校過去問
三角形の辺と式の値の正負を調べる 大阪教育大附属平野
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
a,b,cが三角形の3辺の長さを表すとき$a^2-b^2-c^2+2bc$の正負を調べよ
大阪教育大学附属高等学校平野校舎(改)
この動画を見る
a,b,cが三角形の3辺の長さを表すとき$a^2-b^2-c^2+2bc$の正負を調べよ
大阪教育大学附属高等学校平野校舎(改)
【ここは無理せず安全に!】因数分解:江戸川学園取手高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ a^2-4b^2+12bc-9c^2$を因数分解しなさい.
江戸川取手高校過去問
この動画を見る
$ a^2-4b^2+12bc-9c^2$を因数分解しなさい.
江戸川取手高校過去問
【作問者の掌(てのひら)で踊る…!】平方根:城北高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{2023\times2021-4044+2}$の値を求めよ.
城北高校過去問
この動画を見る
$ \sqrt{2023\times2021-4044+2}$の値を求めよ.
城北高校過去問
冬の澄み切った空気の中で数学を解くショート~全国入試問題解法 #Shorts #数学 #高校入試 #shorts
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{1}{6}x^2-ax-18$を因数分解すると,$\dfrac{1}{6}(x-12)(x+b)$となる.
定数$a,b$の値を求めよ.
明治学院高校過去問
この動画を見る
$ \dfrac{1}{6}x^2-ax-18$を因数分解すると,$\dfrac{1}{6}(x-12)(x+b)$となる.
定数$a,b$の値を求めよ.
明治学院高校過去問
今年もやります!100問解説。2023高校入試解説1問目 式の値 西大和学園
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2 = \frac{\sqrt 5 + \sqrt 2}{\sqrt 3}$ $y^2 = \frac{\sqrt 5 - \sqrt 2}{\sqrt 3}$
$\frac{x^3}{y}$ +$\frac{y^3}{x} -2xy =?$ (x>0,y>0)
2023西大和学園高等学校
この動画を見る
$x^2 = \frac{\sqrt 5 + \sqrt 2}{\sqrt 3}$ $y^2 = \frac{\sqrt 5 - \sqrt 2}{\sqrt 3}$
$\frac{x^3}{y}$ +$\frac{y^3}{x} -2xy =?$ (x>0,y>0)
2023西大和学園高等学校
【解法はいろいろあるから!】図形:新潟県公立高等学校~全国入試問題解法
単元:
#数学(中学生)#中3数学#円#角度と面積#高校入試過去問(数学)
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$A,B,C,D$は円$O$の円周上の4点であり,線分$BD$は円$O$の直径である.
$ \angle ABD=33°,\angle COD=46°$である.
$ \angle x$の大きさを答えなさい.
新潟県高校過去問
この動画を見る
$A,B,C,D$は円$O$の円周上の4点であり,線分$BD$は円$O$の直径である.
$ \angle ABD=33°,\angle COD=46°$である.
$ \angle x$の大きさを答えなさい.
新潟県高校過去問
よく間違える平方根
西暦"2023"を含む入試予想問題(その5)~全国入試問題解法
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$(2023-x)(2024-x)=2025-x$の解は,$x=\Box $である.
$x$を求めよ.
この動画を見る
2次方程式$(2023-x)(2024-x)=2025-x$の解は,$x=\Box $である.
$x$を求めよ.
生徒に解かせると勘違いして間違える問題です。平方根の小数部分 中央大附属
単元:
#数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt {15}$の小数部分と$6-\sqrt{15}$の小数部分との積を求めよ。
中央大学附属高校
この動画を見る
$\sqrt {15}$の小数部分と$6-\sqrt{15}$の小数部分との積を求めよ。
中央大学附属高校
西暦"2023"を含む入試予想問題(その4)~全国入試問題解法
単元:
#数学(中学生)#中3数学#平方根#数と式
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$N$の整数部分が$ N=\sqrt{2023+x}$とする.
整数$x$はいくつあるか.
この動画を見る
$N$の整数部分が$ N=\sqrt{2023+x}$とする.
整数$x$はいくつあるか.
ルートのかけ算
単元:
#数学(中学生)#中3数学#平方根
指導講師:
数学を数楽に
問題文全文(内容文):
$\sqrt{99} \times \sqrt{110} \times \sqrt{30}$
この動画を見る
$\sqrt{99} \times \sqrt{110} \times \sqrt{30}$