中3数学
【高校受験対策/数学/関数46】ひし形の面積を二等分せよ。
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数46
Q
右の図において、①は関数$y=x^2$、②は関数$y=ax^2$のグラフであり、$a \lt 0$である。
点A,Bは①のグラフ上にあり、点Aの$x$座標は$2$で、点Aと点Bの$y$座標は等しい。
点Cを$y$軸上にとり、点Oと点A、点Oと点B、点AとC、点Bと点Cをそれぞれ結んで、ひし形OACBをつくる。
また、②のグラフ上に点Aと$x$座標が等しい点Dをとる。
このとき次の各問いに答えなさい。
問1
2点O,Bを通る直線の式を求めよ。
問2
点Cの座標を求めよ。
問3
$x$軸上に点$(3,0)$をとる。
点$(3,0)$を通り、ひし形OACBの面積を2等分する直線の式を求めよ。
問4
点Oと点Dを結んだ線分ODを1辺とする正方形をつくる。
この正方形とひし形OACBの面積の比が$25:64$であるとき、$a$の値を求めよ。
この動画を見る
高校受験対策・関数46
Q
右の図において、①は関数$y=x^2$、②は関数$y=ax^2$のグラフであり、$a \lt 0$である。
点A,Bは①のグラフ上にあり、点Aの$x$座標は$2$で、点Aと点Bの$y$座標は等しい。
点Cを$y$軸上にとり、点Oと点A、点Oと点B、点AとC、点Bと点Cをそれぞれ結んで、ひし形OACBをつくる。
また、②のグラフ上に点Aと$x$座標が等しい点Dをとる。
このとき次の各問いに答えなさい。
問1
2点O,Bを通る直線の式を求めよ。
問2
点Cの座標を求めよ。
問3
$x$軸上に点$(3,0)$をとる。
点$(3,0)$を通り、ひし形OACBの面積を2等分する直線の式を求めよ。
問4
点Oと点Dを結んだ線分ODを1辺とする正方形をつくる。
この正方形とひし形OACBの面積の比が$25:64$であるとき、$a$の値を求めよ。
三平方の定理のポイントをまとめてみました。
単元:
#数学(中学生)#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
冬休み前に三平方の定理を習わなかった方は
過去問などを始める前に、この動画でポイントを押さえてください。
この動画を見る
冬休み前に三平方の定理を習わなかった方は
過去問などを始める前に、この動画でポイントを押さえてください。
【中学受験算数】ピラミッド相似、リボン相似、色々な相似問題はこう解け! ゼロから始める中学受験算数41
単元:
#算数(中学受験)#数学(中学生)#中3数学#相似な図形#平面図形#相似と相似を利用した問題
指導講師:
こばちゃん塾
問題文全文(内容文):
1⃣下の図で、BCとDEが平行のとき、XYの値を求めましょう。
2⃣下の図で、AB、DC、PQが平行のとき、PQの長さを求めましょう。
*図は動画内参照
この動画を見る
1⃣下の図で、BCとDEが平行のとき、XYの値を求めましょう。
2⃣下の図で、AB、DC、PQが平行のとき、PQの長さを求めましょう。
*図は動画内参照
中学数学 作図4 共通外接線
【高校受験対策】数学-関数43
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数43
Q.
右の図において、曲線アは関数$y=\frac{1}{2}x^2$のグラフである。
曲線ア上の点で$x$座標が$4$である点を$A$、$y$軸上の点で$y$座標が$10,6$である点をそれぞれ$B,C$とし、線分$OB$の中点を$D$とする。
また、線分$OA$上に点$E$をとる。ただし$O$は原点とする。
①2点$A,D$を通る直線の式を求めなさい。
②$△OAB$の面積を求めなさい。
③四角形$ABCE$の面積が$△OAB$の面積の$\frac{1}{2}$であるとき、 点$E$の座標を求めなさい。
この動画を見る
高校受験対策・関数43
Q.
右の図において、曲線アは関数$y=\frac{1}{2}x^2$のグラフである。
曲線ア上の点で$x$座標が$4$である点を$A$、$y$軸上の点で$y$座標が$10,6$である点をそれぞれ$B,C$とし、線分$OB$の中点を$D$とする。
また、線分$OA$上に点$E$をとる。ただし$O$は原点とする。
①2点$A,D$を通る直線の式を求めなさい。
②$△OAB$の面積を求めなさい。
③四角形$ABCE$の面積が$△OAB$の面積の$\frac{1}{2}$であるとき、 点$E$の座標を求めなさい。
甲陽学院高校 整数問題 高校入試
単元:
#算数(中学受験)#数学(中学生)#中3数学#平方根#過去問解説(学校別)#甲陽学院中学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$S_n=1!+2!+3!+…+n!$
$S_n$が平方数となる$n$を全て求めよ
(1)
$5!$を求めよ
$S_{10}$の1の位
出典:甲陽学院高等学校 入試問題
この動画を見る
$S_n=1!+2!+3!+…+n!$
$S_n$が平方数となる$n$を全て求めよ
(1)
$5!$を求めよ
$S_{10}$の1の位
出典:甲陽学院高等学校 入試問題
中学生向け計算問題 因数分解 暇つぶし
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師:
鈴木貫太郎
問題文全文(内容文):
因数分解
$\sqrt{ 900・901・902・903+1 }$を計算せよ
$(x+1)(x+2)(x+3)(x+4)-3$
この動画を見る
因数分解
$\sqrt{ 900・901・902・903+1 }$を計算せよ
$(x+1)(x+2)(x+3)(x+4)-3$
大阪教育大 複雑な3乗根の外し方
単元:
#数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#2次方程式#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
この動画を見る
$\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }+1 }-\sqrt[3]{ \sqrt{ \displaystyle \frac{28}{27} }-1 }$の値を求めよ
出典:大阪教育大学
【中学数学】2次方程式:2次方程式x²+ax+b=0の解が3と8のとき、a,bの値を求めよ。
【中学数学】三平方の定理:相似と三平方の定理を駆使して長さを出します!!
単元:
#数学(中学生)#中3数学#三平方の定理
教材:
#TK数学#TK数学問題集2(幾何編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
図は1辺の長さが9cmの正方形ABCDを、頂点Aが辺DC上の点Eに重なるように折り返したもので、PQは折り目の線である。DE=3cmであるとき、次の問いに答えなさい。
(2)線分BQの長さを求めなさい。
この動画を見る
図は1辺の長さが9cmの正方形ABCDを、頂点Aが辺DC上の点Eに重なるように折り返したもので、PQは折り目の線である。DE=3cmであるとき、次の問いに答えなさい。
(2)線分BQの長さを求めなさい。
立教大 2次方程式の解 Mathematics Japanese university entrance exam
単元:
#2次方程式#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
この動画を見る
$x^2-2(a-1)x+(a-2)^2=0$の2つの解を$\alpha,\beta$
$0 \lt \alpha \lt 1 \lt \beta \lt 2$となる$a$の範囲は?
出典:立教大学 過去問
中学生でもわかる解の公式の証明【中3以上必見】
【高校受験対策】数学-図形24
単元:
#数学(中学生)#中1数学#中3数学#空間図形#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
問2
右の図の正四面体は、1辺の長さが8cmである。辺$BC$、$CD$の中点をそれぞれ点$P$、Q、 点$Q$から$AP$にひいた垂線と$AP$との交点を$R$とする。次の(1)~(4)に答えなさい。
(1) $AQ$の長さを求めなさい。
(2) $△APQ$の面積を求めなさい。
(3) $QR$の長さを求めなさい。
(4) 三角すい$RBCD$の体積は、正四面体$ABCD$の体積の何倍か、求めなさい
この動画を見る
問2
右の図の正四面体は、1辺の長さが8cmである。辺$BC$、$CD$の中点をそれぞれ点$P$、Q、 点$Q$から$AP$にひいた垂線と$AP$との交点を$R$とする。次の(1)~(4)に答えなさい。
(1) $AQ$の長さを求めなさい。
(2) $△APQ$の面積を求めなさい。
(3) $QR$の長さを求めなさい。
(4) 三角すい$RBCD$の体積は、正四面体$ABCD$の体積の何倍か、求めなさい
福田の一夜漬け数学〜図形と方程式〜円の方程式(3)直線と円の位置関係、高校2年生
単元:
#数Ⅱ#円#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
この動画を見る
${\Large\boxed{1}}$ 直線$mx-y-(3m-1)=0$ と円$x^2+y^2=2$ の位置関係を調べよ。
福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)
単元:
#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。
${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
灘中 中学入試問題に挑戦
単元:
#算数(中学受験)#中3数学#式の計算(展開、因数分解)#灘中学校
指導講師:
鈴木貫太郎
問題文全文(内容文):
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
この動画を見る
灘中学校過去問題
数xに対してxを超えない整数のうち最大のものを[x]で表す。
[3.5]=3 , [4] = 4
$[\frac{1×1}{68}],[\frac{2×2}{68}],[\frac{3×3}{68}],\cdots,[\frac{2010×2010}{68}]$
この2010個の整数の中に、全部で何種類の整数があるか。
質問に対する返答動画です。円の性質、三平方の定理、計算の工夫、
単元:
#数学(中学生)#中3数学#円#三平方の定理
指導講師:
鈴木貫太郎
問題文全文(内容文):
右の図のように、半径2の外接する2円A,Bが半径5の円Oに内接している。
2円A,Bに外接する円Oに内接する円Cの半径を求めよ。
*図は動画内参照
この動画を見る
右の図のように、半径2の外接する2円A,Bが半径5の円Oに内接している。
2円A,Bに外接する円Oに内接する円Cの半径を求めよ。
*図は動画内参照
ご質問に対する返答動画です。円の面積はなぜπr^2
【中学数学】図形の極意!16分で図形の解き方がわかる動画
単元:
#数学(中学生)#中3数学
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【中学数学】図形の極意!16分で図形の解き方がわかる動画
動画内の図のようなAB=12cm AD=5cmである長方形について、以下の問に答えよ。
(1)DBの長さを求めよ。
(2)辺DCを軸として長方形ABCDを回転させたときにできる立体の表面積を求めよ。
(3)辺DCを軸として、長方形ABCDを回転させたときにできる立体の体積を$V_{ 1 }$、△DBCを1回転させたときにできる体積を$V_{ 2 }$とするとき、$V_{ 1 }:V_{ 2 }$を求めなさい。
この動画を見る
【中学数学】図形の極意!16分で図形の解き方がわかる動画
動画内の図のようなAB=12cm AD=5cmである長方形について、以下の問に答えよ。
(1)DBの長さを求めよ。
(2)辺DCを軸として長方形ABCDを回転させたときにできる立体の表面積を求めよ。
(3)辺DCを軸として、長方形ABCDを回転させたときにできる立体の体積を$V_{ 1 }$、△DBCを1回転させたときにできる体積を$V_{ 2 }$とするとき、$V_{ 1 }:V_{ 2 }$を求めなさい。
中学数学(2次関数)【篠原好】
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
中3向け数学「2次関数」についての説明です。
※図式・数式は動画内参照
この動画を見る
中3向け数学「2次関数」についての説明です。
※図式・数式は動画内参照
中学数学(2次方程式)【篠原好】
単元:
#数学(中学生)#中3数学#2次方程式
指導講師:
篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
中3向け数学「2次方程式」についての講義です。
※問題文は動画内参照
この動画を見る
中3向け数学「2次方程式」についての講義です。
※問題文は動画内参照
【受験対策】 数学-関数⑩
単元:
#中3数学
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のように関数$y=x^2$のグラフ上に2点A.Bがあり点A.Bのx座標はそれぞれ-2.3である。
また、点Bを通り、△AOBの面積を2等分する直線をℓとし、直線ℓとy軸との交点をPとする。
①Bの座標は?
②直線ℓの式は?
③△OBPと△AOBの面積比を最も簡単な整数比でもとめよう。
※図は動画内参照
この動画を見る
右の図のように関数$y=x^2$のグラフ上に2点A.Bがあり点A.Bのx座標はそれぞれ-2.3である。
また、点Bを通り、△AOBの面積を2等分する直線をℓとし、直線ℓとy軸との交点をPとする。
①Bの座標は?
②直線ℓの式は?
③△OBPと△AOBの面積比を最も簡単な整数比でもとめよう。
※図は動画内参照
【受験対策】 数学-関数⑦
単元:
#数学(中学生)#中3数学#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図で、直線人は2点A(4.10)、B(6.0)を 通る直線です。
また、直線mは関数$y=\displaystyle \frac{3}{2}x+4$のグラフで、点Aを通っています。
①直線ℓの式を求めよう。
②直線mとy軸との交点をCとする。
四角形OCABの面積は?
③点Aを通る直線をnとします。
直線が四角形OCABの面積を2等分するとき、
直線へと入軸との交点の座標は?
※図は動画内参照
この動画を見る
右の図で、直線人は2点A(4.10)、B(6.0)を 通る直線です。
また、直線mは関数$y=\displaystyle \frac{3}{2}x+4$のグラフで、点Aを通っています。
①直線ℓの式を求めよう。
②直線mとy軸との交点をCとする。
四角形OCABの面積は?
③点Aを通る直線をnとします。
直線が四角形OCABの面積を2等分するとき、
直線へと入軸との交点の座標は?
※図は動画内参照
【受験対策】 数学-図形③
単元:
#数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図で、△ABC,△BDEはどちらも正三角形で辺AC上に頂点Dがあります。
AB:AE=5:3のとき、次の問いに答えよう。
①$\angle ABE=54°$のとき、$\angle BDC$の大きさは?
②AD:CDを、最も簡単な整数の比で求めよう。
③△ABDの面積は四角形EBCAの面積の何倍?
※図は動画内参照
この動画を見る
右の図で、△ABC,△BDEはどちらも正三角形で辺AC上に頂点Dがあります。
AB:AE=5:3のとき、次の問いに答えよう。
①$\angle ABE=54°$のとき、$\angle BDC$の大きさは?
②AD:CDを、最も簡単な整数の比で求めよう。
③△ABDの面積は四角形EBCAの面積の何倍?
※図は動画内参照
【受験対策】 数学-図形②
単元:
#数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。
② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。
③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
この動画を見る
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。
② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。
③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
【受験対策】 数学-関数⑤
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のように、関数$y=\displaystyle \frac{1}{2}x^2$のグラフ上に、 3点A、B、Cがあり、
点Bのx座標は2、点Cのx座標は4である。
また、y軸上に点、D(0.8)がある。
四角形ABCDが 平行四辺形となるとき、次の問いに答えよう。
①点Aの座標は?
②直線BDの式は?
③平行四辺形ABCDの面積は?
④原点Oを通り、平行四辺形ABCDの
面積を2等分する直線の式は?
※図は動画内参照
この動画を見る
右の図のように、関数$y=\displaystyle \frac{1}{2}x^2$のグラフ上に、 3点A、B、Cがあり、
点Bのx座標は2、点Cのx座標は4である。
また、y軸上に点、D(0.8)がある。
四角形ABCDが 平行四辺形となるとき、次の問いに答えよう。
①点Aの座標は?
②直線BDの式は?
③平行四辺形ABCDの面積は?
④原点Oを通り、平行四辺形ABCDの
面積を2等分する直線の式は?
※図は動画内参照
【受験対策】 数学-図形①
単元:
#数学(中学生)#中2数学#中3数学#平行と合同#相似な図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図のように、長方形ABCDの辺CD上に点Eをとり、頂点B、DからAEにそれぞれ垂線BF、DGをひきます。
また、DFの延長と辺ABとの交点をHとします。
①$AB=AD,BF12cm$、$DG=4cm$のとき、四角形BFDGの面積は?
②$\angle ABF=\angle FDG、\angle AHF=\angle DFG$のとき、
$AG:AE$を、最も簡単な整数の比で表そう。
※図は動画内参照
この動画を見る
右の図のように、長方形ABCDの辺CD上に点Eをとり、頂点B、DからAEにそれぞれ垂線BF、DGをひきます。
また、DFの延長と辺ABとの交点をHとします。
①$AB=AD,BF12cm$、$DG=4cm$のとき、四角形BFDGの面積は?
②$\angle ABF=\angle FDG、\angle AHF=\angle DFG$のとき、
$AG:AE$を、最も簡単な整数の比で表そう。
※図は動画内参照
【受験対策】 数学-関数③
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
右の図で曲線は$y=x^2$のグラフです。
動点Pは原点Oからと軸上を正の方向に毎秒4の速さで移動し、
動点Qは原点OからX軸上を正の方向に毎秒2の速さで移動します。
①動点P、Qが同時に出発して2秒後にできる直線PQの式は?
②①でもとめた直線PQと曲線との2つの交点において、X座標が負の点をR もう一方をSとするとき、2点R、Sの座標は?
③線分RSの長さは?
※図は動画内参照
この動画を見る
右の図で曲線は$y=x^2$のグラフです。
動点Pは原点Oからと軸上を正の方向に毎秒4の速さで移動し、
動点Qは原点OからX軸上を正の方向に毎秒2の速さで移動します。
①動点P、Qが同時に出発して2秒後にできる直線PQの式は?
②①でもとめた直線PQと曲線との2つの交点において、X座標が負の点をR もう一方をSとするとき、2点R、Sの座標は?
③線分RSの長さは?
※図は動画内参照
【受験対策】 数学-規則性②
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は、1番目では16本、2番目では36本 3番目では64本である。
①4番目の図形をつくるには何本のマッチ棒が必要?
②n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
この動画を見る
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は、1番目では16本、2番目では36本 3番目では64本である。
①4番目の図形をつくるには何本のマッチ棒が必要?
②n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
【受験対策】 数学-規則性①
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目、3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は1番目では4本、2番目では12本、 3番目では24本である。
①5番目の図形をつくるには何本のマッチ棒が必要?
②14番目の図形をつくるには何本のマッチ棒が必要?
③n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照
この動画を見る
同じ長さのマッチ棒を用いて、下の図のように、一定の規則にしたがって、1番目、2番目、3番目、…とマッチ棒をつなぎ合わせて図形をつくっていく。
用いたマッチ棒の数は1番目では4本、2番目では12本、 3番目では24本である。
①5番目の図形をつくるには何本のマッチ棒が必要?
②14番目の図形をつくるには何本のマッチ棒が必要?
③n番目の図形をつくるには何本のマッチ棒が必要か、nの式で表そう。
※図は動画内参照