数学(中学生) - 質問解決D.B.(データベース) - Page 126

数学(中学生)

【高校受験対策】数学-関数24(動画では間違って23と書いちゃいました。汗)

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,曲線は関数$y=x^2$グラフです.
$x$軸上に $x$座標が$-3$である点$A$をとり,
点$A$を通り傾きが正の直線をひきます.
直線と曲線との交点のうちと座標が負のものを$B$,正のものを$C$とし,
直線と軸との交点を$D$とします.
このとき次の各問に答えなさい.ただし,座標軸の単位の長さを$1cm$とします.

①点$B$の$x$座標が$-2$のとき,$△BOD$の面積を求めなさい.

②$AB: BC = 1 :3$のとき,$BC$の長さを求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守10

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#文章題#文章題その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の各問に答えなさい.

①$9a-5a$を計算しなさい.

②$12\div (-2)+1$を計算しなさい.

③$6\sqrt7-\sqrt{28}$を計算しなさい.

④$x=13$のとき,$x^2-8x+15$の値を求めなさい.

⑤2次方程式$5x^2-9x+3=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 7 \\
x + y = -1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦右の図の曲線は,$y=ax^2$のグラフです.
グラフから,$a$の値を求めなさい.

⑧上の表は,あるクイズ大会に参加した40人全員の結果をまとめたものです.
クイズの問題は,$A,B,C$の3問ありました.
正解のときに与えられた得点は,$A,B$がそれぞれ1点,$C$が3点で,
正解のとき以外は0点でした.3問のうち2問だけが正解だった人数を求めなさい.

⑨右の図1の四角形$ABCD$は,$AD /\!/ BC$の台形であり,
線分$AC$と$DB$の交点を$E$とします.
$AB=AD,\angle BAC=80° \angle ACB = 30°$のとき,
$\angle DEC$の大きさ$x$を求めなさい.

⑩右の図2は,正四角錐の投影図です.
この正四角錐の立面図は,1辺の長さが$6cm$の正三角形です.
この正四角錐の体積を求めなさい.

⑪ある菓子店では,どら焼きを6個入りの箱と8個入りの箱で販売している.
6個入りの箱と8個入りの箱の組み合わせで,
どら焼きをちょうど34個買うには,6個入りの箱と8 個入りの箱は,
それぞれ何箱になるか求めなさい.
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守8

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#文章題#文章題その他#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$4 \times (5+2)$を計算しなさい.

②$\dfrac{2}{3}-\dfrac{1}{5}$を計算しなさい.

③$24\div (-6)$を計算しなさい.

④$3(2x-y)-(x+5y)$を計算しなさい.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=8 \\
2x-y=-5
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑥$x^2+x-56$を因数分解しなさい.

⑦$(\sqrt{27}-\sqrt3)\times \sqrt2$を計算しなさい.

⑧方程式$x^2-5x+1=0$を解きなさい.

⑨下の図のように,$\triangle ABC$の辺$BC$を延長して$CD$とし,
辺$CA$を延長して$AE$とします.
$\angle ABC=41°,\angle ACD=124°$のとき,
$\angle BAE$の大きさは何度ですか.

⑩1箱60円のチョコレートと1個40円のあめが売られています.
このチョコレートとあめを買うとき,代金をちょうど500円にするには,
買い方は全部で何通りありますか.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守7

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-関数23

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において,①は関数$y=\dfrac{1}{2}x^2$,
②は$x$軸に平行な直線のグラフである.
①と②の交点のうち,$x$座標が正のものを$A$,負のものを$B$とする.
また,$C$は$x$軸上を動く点で,2点$B,C$を通る直線のグラフを③とし,
①と③のグラフの交点のうち,$B$でないほうを$P$とする.
ただし,点$C$の$x$座標は正である.

①点$A$の$x$座標が3のとき,$△OAB$の面積を求めよ.

②点$B$の$x$座標を$-4$,点$C$の$x$座標を$12$とするとき,
直線$BC$の式を求めよ.

③点$B$の$y$座標を$4$とする.
$△OPB$と$△OCP$の面積が等しいとき,
$△OCB$を$x$軸を軸として1回転させてできる
立体の体積を求めよ.

図は動画内を参照
この動画を見る 

中学数学を攻略せよ!3つの壁を突破して、数学がニガテにならない勉強法~数学で点数をガッツリ稼げるようになろう!【篠原好】

アイキャッチ画像
単元: #数学(中学生)#その他#勉強法
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
3つの壁を突破して、数学がニガテにならない勉強法!
「中学数学の攻略」についてお話しています。
この動画を見る 

【高校受験対策】数学-死守6

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#比例・反比例#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$5-7$

②$- 6 + 9 \div \dfrac{1}{4}$

③$3\sqrt2\times \sqrt8$

④$2(2a-3b)+(a-5b)$

2.次の問いに答えなさい.

⑤右の図1のように,線分$AB$を直径とする円があります.
円の中心$O$を定規とコンパスを使って作図しなさい.
ただし,点を示す記号$O$をかき入れ,作図に用いた線は消さないこと.

⑥右の図2のような反比例の関係$y =\dfrac{a}{x}$のグラフがあります.
点$O$は原点とします.$a$の値を求めなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x + y = 5 \\
y=4x-1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧二次方程式$x^2+5x+1=0$を解きなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守5

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$1-7$

②$(-3)^2\times 2-5\times 3$

③$\dfrac{2}{3}-\dfrac{7}{10}\div \left(-\dfrac{7}{15}\right)$

④$2(x+3y)-(2x-y)$

⑤$\sqrt8+\sqrt6\times \sqrt3$

2,つぎの各問に答えなさい.

⑥$x^2+5x$を因数分解しなさい.

⑦連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-3y=-1 \\
x+6y=13
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑧2次方程式$3^2-5x+1=0$を解きなさい.

⑨$3a+b=10$を$a$について解きなさい.

⑩$15:(x-2)=3:2$であるとき,
$x$の値を求めなさい.
この動画を見る 

【高校受験対策】数学-死守4

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$7+3\times (-5)$を計算せよ.

②$3(2a+1)-4(a+2)$を計算せよ.

③$a=-3,b=6$のとき,
$-a^2+2b$の値を求めよ.

④$\dfrac{27}{\sqrt3}-\sqrt{48}$を計算せよ.

⑤1次方程式$x-9=3(x-1)$を解け.

⑥2次方程式$x(x-6)=-4(x-2)$を解け.

⑦$y$は$x$に反比例し,$x=-3$のとき,$y=-8$である.
$x=-4$のときの$y$の値を求めよ.
この動画を見る 

【高校受験対策】死守-3

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$6+4 \times \left(-\dfrac{1}{2}\right)$を計算せよ.

②$8a+b-(a-7b)$を計算せよ.

③$(\sqrt5 +\sqrt 3)(\sqrt 5-\sqrt3)$を計算せよ.

④1次方程式$9x+2=8(x+1)$を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=4 \\
6x+5y=-7
\end{array}
\right.
\end{eqnarray}$を解け.

⑥2次方程式$x^2-8x-9=0$を解け.

⑦関数$y=\dfrac{1}{3}x^2$について,
$x$の値を3から9まで増加するときの割合を求めよ.
この動画を見る 

【高校受験対策】死守-2

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の①~⑤の計算しなさい.

①$(-3)+7$

②$10a-2.5a$

③$2x^2 \div 4xy \times (-6y)$

④$a+2b-\dfrac{2a+5b}{3}$

⑤$\sqrt{45}-\sqrt 5$

2.次の①~③の問いに答えなさい.

①$-1.98 \lt x \lt \dfrac{9}{4}$を満たす整数$x$を,
小さい順に書きなさい.

②$(x+3)(x-4)-8$を因数分解しなさい.

③2次方程式$x(x+2)-5=0$を解きなさい.
この動画を見る 

【高校受験対策】死守-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$24 \div (7-4)$を計算しなさい.

②$\dfrac{1}{2}+\dfrac{2}{5}$を計算しなさい.

③$7+(-3)\times 4$を計算しなさい.

④$(5x-y)-3(x-5y)$を計算しなさい.

⑤下の連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
x = 3y-2 \\
4x-7y=2
\end{array}
\right.
\end{eqnarray}$

⑥$\sqrt{32}-\sqrt 8+\sqrt2 $を計算しなさい.

⑦$x^2-36y^2$を因数分解しなさい.

⑧方程式$x^2+7x+2=0$を解きなさい.
この動画を見る 

【高校受験対策】数学-図形12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のような,線分$AB,AC,BC$を
それぞれ直径とする半円を組み合わせた図形があり,
$AB=12cm$,点$C$は線分$AB$の中点である.
このとき,次の各問いに答えよ. ただし,円周率は$\pi$とする.

(1)影をつけた部分の図形について,次の各問いに答えよ.

①面積を求めよ.

②周の長さを求めよ.

(2)右の図2のように,線分$AB$を直径とする半円の弧上に点$P$,
線分$BC$を直径とする半円の弧上に点$Q$をとり,
点$B$と$P$,点$C$と$P$,点$C$と$Q$をそれぞれ結ぶ.
このとき,次の各問いに答えよ.

①$\angle PBC = 65°$とのとき,影をつけた部分の面積を求めよ.

②$\angle PCQ = 90°$のとき,
$\stackrel{\huge\frown}{QB}$と$\stackrel{\huge\frown}{BP}$の長さの和を求めよ.
この動画を見る 

【高校受験対策】数学-確率4

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
下の図は,$\boxed{A},\boxed{B},\boxed{C},\boxed{D}$の4種類のカードを,
1列に並べたものです. 大小2つのさいころを同時に1回投げます.
大きい方のさいころの出た目の数を入として,
左から$x$番目のカードとそれより左にあるすべてのカードを列から取り除きます.
また,小さい方のさいころの出た目の数をと$y$として,
右から$y$番目のカードとそれより右にあるすべてのカードを列から取り除きます.
このとき,次の各問いに答えなさい.

${}_{(左)}\boxed{A}\boxed{A}\boxed{A}\boxed{A}\boxed{B}\boxed{B}\boxed{B}\boxed{C}\boxed{C}\boxed{C}\boxed{D}\boxed{D}\boxed{D}_{(右)}$

①取り除かれずに残っているカードが5枚のとき,
$y$を$x$の式で表しなさい.

②取り除かれずに残っているカードの種類が,
3種類となる確率を求めなさい.
この動画を見る 

【高校受験対策】数学-証明5

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,円$O$の円周上に3点$A,B,C$があり,
$\angle AOC = 90°$である.
点$B$における円$O$の接線と線分$OC$の延長との交点を$D$とし,
線分$OA$の延長上に$EO=OD$となるように点$E$をとる.
点$E$から直線$OB$に垂線をひき,
直線$OB$との交点を$F$とする.
これについて,次の各問いに答えなさい.

①$EF=OB$であることを証明しなさい.

②円の半径が$3\sqrt 2 cm$,
四角形$AOCB$の面積が$11 cm^2$のとき,
点$B$と直線$AC$との距離を求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-関数22

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において,直線$\ell$は関数$y = 2x + 8$ グラフで,
曲線$m$は関数$y=ax^2$のグラフである.
点$A$は直線$\ell$と$y$軸との交点である.
点$B$は曲線$m$上の点で,その$x$座標は6であり,
線分$AB$は$x$軸に平行である.
点$C$は直線$\ell$と$x$軸との交点である.
また,原点を$O$とするとき,点$D$は$y$軸の点で,
$OB=OD$であり,その$y$座標は負である.
さらに,点$E$は$OD=BE$となる点で,線分$BE$は$y$軸に平行であり,
その$y$座標は負である.このとき,次の問いに答えなさい.

①$a$の値を求めなさい.

②直線$CD$の式を求めなさい.

③点$F$は線分$OA$の中点であり,
点$G$は線分$DE$上の点である.
直線$FG$が四角形$ODEB$の面積を2等分するとき,
点$G$の座標を求めなさい.
この動画を見る 

【高校受験対策】数学-関数21

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,直線$\ell$は関数$Y=-x+6$のグラフで,
$x$軸上に点$A(-1,0)$,点$B(4,0)$を,
$y$軸上に点$C(0,4)$をそれぞれとる.
また,直線$\ell$上の$X\gt 0,y\gt 0$の部分に点$P$をとる.
このとき,次の各問いに答えなさい.

①2点$A,C$を通る直線の式を求めなさい.

②$△ABP$の面積と$△ACP$の面積が等しくなるときの
点$P$の座標を求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-規則性5

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ます目が書いてあるボード上で,次の規則にしたがって,円形のコマを進める.

<規則>
①最初に,図1のようにボードの左下のます目にコマをおく.
②さいころを1回振って出た目の数が奇数ならば上方向に,
偶数ならば右方向に出た目の数だけコマを進める.
ただし,コマがます目の端まで進めば,それまでとは反対方向にコマを進める.
③続けて2回目のさいころを振るとき,
コマが1回目に進んだ位置から②の規則にしたがってコマを進め,
コマが2回目に進んだ位置をコマが止まるます目とする.

(1)さいころを2回振って,$5→6$の順に目が出た.
$4\times 4$のます目の中で,コマが止まるます目に○印を記入しなさい.

(2)さいころを2回振って,$4\times 4$のます目のボード上でコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

(3) さいころを2回振って,$5\times 5$のます目(図2)のボード上で,
規則にしたがってコマを進めたとき,
コマが止まるます目は全部で何個あるか求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-関数20

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,直線$\ell$は関数$y=-\dfrac{3}{2}x+12$のグラフで,
点$A$は直線$\ell$と$x$軸との交点,
点$B$は直線上の点で$x$座標は$6$である.
このとき,次の各問いに答えなさい.

①関数$Y=-\dfrac{3}{2}x+12$について,
$y$の増加量が$12$のときの$x$の増加量を求めなさい.

②直線$\ell$上の点で,
$y$座標の値が$x$座標の値の$2$倍となる座標を求めなさい.

③点$B$を通り傾きが正の直線と$y$軸,
$x$軸との交点をそれぞれ$C,D$とする.
$△OCD$の面積と$△ABD$の面積が等しくなるとき,
点$C$の座標を求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-関数19

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,直線$\ell$は関数$f =-\dfrac{1}{2}x+12$グラフで,
点$A$は直線$\ell$と$x$軸との交点である.
$x$軸上に点$B(9,0)$を,$y$軸上に点$C(0,6)$をそれぞれとる.
また,直線上に点$D(12,6)$をとると,
$△ABD$は$\angle ADB = 90°$の直角三角形になる.
これについて,次の各問いに答えなさい.

①点$A$の座標を求めなさい.

②$△ABD$の面積を求めなさい.

③直線$\ell$に点$P$をとる.
$BP+PC$の長さが最小になるときの点$P$の座標を求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-関数18

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のように,$AB = 8cm,\angle ABC=90°,\angle BCD = 90°$の
四角形$ABCD$がある.
点$P$は頂点$A$を出発し,
一定の速さで辺$AB,BC,CD$上を通って,頂点$D$まで移動する.
点$P$が頂点$A$を出発してから$x$秒後の3点$A,P,D$を結んでできる
$△APD$の面積を$ycm^2$とする.
右の図2は, $x$と$y$の関係をグラフに表したものである.
このとき,次の各問いに答えなさい.
ただし,点$P$が頂点$A,D$にあるときは$y=0$とする.

①点$P$が移動する速さは毎秒何$cm$か答えなさい.

②図1の辺$BC$と辺$CD$の長さをそれぞれ求めなさい.

③図2のグラフ中の$a$の値と$b$の値を,それぞれ求めなさい.

④点$P$が辺$BC$上にあるとき,
$△ABP$と$△APD$の面積が等しくなるのは,
点$P$が頂点$A$を出発してから何秒後か求めなさい.

図は動画内参照
この動画を見る 

【受験対策】数学-小問4

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#2次方程式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$\sqrt{45(n+1)}$の値が自然数となるような自然数$n$のうち,
最も小さいものを求めなさい.

②2次方程式$2x^2 + ax -12 = 0$ の解の1つが$-4$であるとき,
もう1つの解を求めなさい.

③$\sqrt{75}-\sqrt n=\sqrt{27}$を満たす自然数$n$を求めなさい.

④箱の中に同じ大きさの白玉がたくさん入っている.
標本調査を行い,その箱の中にある白玉の数を推定することにした.
箱の中から白玉を100個取り出して,その全部に印をつけてもとに戻し,
よくかき混ぜた後,箱の中から白玉を30個取り出したところ,
その中に印のついた白玉が5個あった.
この箱の中にはおよそ何個の白玉が入っていたと考えられるか.
答えなさい.
この動画を見る 

【受験対策】数学-関数17

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,関数$y=ax^2$のグラフ上に点$A$がある.
点$A$の$x$座標が2のとき,次の問いに答えなさい.
ただし,$a\gt 0$とする.

①点$A$の$y$座標が6のとき,$a$の値を求めなさい.

②$a=2$とする.
直線$y=2x+b$が点$A$をとおるとき,$b$の値を求めなさい.

③点$A$と$y$軸について,対称な点を$B$とする.
また,$y$軸上に$y$座標が$-1$となる点$C$をとる.
$\triangle ABC$が直角二等辺三角形となるとき,
$a$の値を求めなさい.

図は動画内参照
この動画を見る 

【受験対策】数学-証明4

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,円$O$に正三角形$ABC$が内接している.
点$C$をふくまない側にある孤$AB$上に点$D$をとり,
$△ADB$をつくる.
線分$CD$をひき,線分$AB$との交点を$E$とし,
線分$CD$上に$AD=CF$となる点$F$をとる.
線分$BF$を延長した直線と線分$AC$,円$O$との交点を
それぞれ$G,H$とする.
このとき,次の各問いに答えなさい.
ただし,点$H$は点$B$と異なる点とする .

①$△ADB\equiv △CFB$を証明しなさい.

②$\triangle BFE \sim \triangle CHG$を証明しなさい.

図は動画内参照
この動画を見る 

【受験対策】数学-図形11

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図は,$ AB = 3cm,BC = 2cm,\angle ABC = 90°$の
直角三角形$ABC$を底面とし,
点$D$を頂点とする三角錐であり,
$AD=6cm,\angle ABD= \angle CBD = 90°$である.
また,点$E$は辺$AD$上の点で,$AE = 2cm$である.
このとき,次の各問いに答えなさい.

①この三角錐の体積を求めなさい.

②この三角錐の表面に,点$C$から辺$BD$を通るように,
点$E$まで細い糸をかける.
かけた糸の長さが最も短くなるとき,その糸の長さを求めなさい.
ただし糸はのびたり縮んだりしないものとする.

図は動画内参照
この動画を見る 

【受験対策】数学-関数16

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図のように,関数$y = ax^2$ グラフ上に,点$A(4,8)$がある.
また,点$B$,点$C$は$y$軸上の点で,
$\triangle ABC$は$AB = AC = 5$ の二等辺三角形である.
このとき,次の各問いに答えなさい.

①$a$の値を求めなさい.

②点$A$から$y$軸に垂線$AD$をひく.
この関数のグラフ上で,点$A$と原点$O$の間に点$P$をとり,
$\triangle ABC$の面積と$\triangle ADP$の面積が等しくなるようにする.
このとき,点$P$の$x$座標を求めなさい.

③点$C$を通り,$AB$に平行な直線と,この関数のグラフの交点のうち,
$x$座標が負である点を$E$とし,$EC$の延長と点$A$から
$x$軸にひいた垂線との交点を$F$とする.
このとき,②における点$P$において,
$\triangle OEF$の面積は$\triangle OPC$の面積の何倍か
求めなさい.

図は動画内参照
この動画を見る 

【受験対策】数学-証明3

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平行と合同#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,$\triangle ABC$の辺$BC$上に点$D$がある.
3点$A,B,D$を通る円と,辺$AC$との交点を$E$とするとき,
次の各問いに答えなさい.

①$\angle AEB=47°$のとき,$\angle ADC$の大きさを求めなさい.

②$AE=BD$のとき,$\triangle ACD\equiv \triangle BCE$を証明しなさい.

図は動画内参照
この動画を見る 

【受験対策】数学-証明2

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,$\triangle ABC$は$AB=AC$の二等辺三角形,
$\triangle ACD$は$AC=AD$の二等辺三角形で,
頂点$D$から辺$CB$に平行な直線をひき,
辺$AB$との交点を$E$とする.
$AB=DE$のとき,次の各問いに答えなさい.

①$\triangle ABC$と$\triangle DEA$が合同であることを証明しなさい.

②$BD$と$AC$との交点を$F$とする.
$BC=BF$のとき,$\angle BAD$の大きさを求めなさい.

図は動画内参照
この動画を見る 

【受験対策】数学-証明1

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#空間図形#平面図形#角度と面積#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,四角形$ABCD$は,$AD /\!/BC,AD\lt BC$の台形である.
辺$CD$の中点を$E$ とし,
辺$BC$の延長と$AE$の延長との交点を$F$とする.
また,頂点$B$から辺$CD$に平行にひいた直線と
$EA$の延長との交点を$G$とするとき,
次の各問いに答えなさい.

①$AE=FE$であることを証明しなさい.

②$\angle DAE=42°,\angle FEC=37$のとき,
$\angle CBG$の大きさを求めなさい.

図は動画内参照
この動画を見る 
PAGE TOP