東工大 秀才栗崎 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東工大 秀才栗崎 Mathematics Japanese university entrance exam

問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?

出典:1992年東京工業大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?

出典:1992年東京工業大学 過去問
投稿日:2019.02.24

<関連動画>

福田の数学〜立教大学2025理学部第3問〜指数関数と円でできる領域の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$a,p$は正の実数とする。

座標平面上の曲線$C_1:y=e^x$と$C_1$上の点

$(p,e^p)$がある。

$P$における$C_1$の法線を$\ell,\ell$と$x$軸の

交点を$A(a,0)$、$A$を中心とする半径$r$の円を

$C_2$とする。

$P$が$C_1$と$C_2$のただ一つの共有点であるとき、

次の問いに答えよ。

(1)$\ell$の方程式を$p$を用いて表せ。

(2)$a$を$p$を用いて表せ。

(3)$r$を$p$を用いて表せ。

(4)$\angle OAP=\dfrac{\pi}{6}$のとき、$p$の値を求めよ。

(5)$p$を(4)で求めた値とするとき、

次の不等式の表す領域$D$の面積$S$を求めよ。

$-2 \leqq x \leqq p,\ y\geqq 0,\ y\leqq e^x,$

$(x-a)^2+y^2\geqq r^2$

$2025$年立教大学理学部過去問題
この動画を見る 

福田のわかった数学〜高校3年生理系100〜不等式の証明(7)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 不等式の証明(7)
$e^a(b-a) \lt e^b-e^a \lt e^b(b-a)$
(ただし、$a \lt b$)
この動画を見る 

大阪大学 対数 不等式 質問への返答「対数微分法」高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪大学過去問題
xの範囲を求めよ
$\log_2(1-x)+\log_4(x+4) \leqq 2$
この動画を見る 

福田のおもしろ数学169〜log x/xの極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}$=0 を証明せよ。
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第4問〜関数の増減と実数解をもつ条件

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ (1)関数
$y$=$\displaystyle-\frac{\cos3x}{\sin^3x}$ (0<$x$<$\pi$)
の増減と極値を調べ、そのグラフの概形を描け。ただし、グラフの凹凸は調べなくてよい。
(2)$a$を実数の定数とする。$x$についての方程式
$-\cos3x$=$a\sin^3x$
が$\displaystyle\frac{\pi}{6}$<$x$<$\displaystyle\frac{2\pi}{3}$の範囲に実数解をもつような$a$の値の範囲を求めよ。
この動画を見る 
PAGE TOP