光文社新書「中学の知識でオイラーの公式がわかる」Vol.6 自由落下運動と微分 - 質問解決D.B.(データベース)

光文社新書「中学の知識でオイラーの公式がわかる」Vol.6 自由落下運動と微分

問題文全文(内容文):
自由落下運動と微分の解説動画です
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
自由落下運動と微分の解説動画です
投稿日:2020.01.16

<関連動画>

福田のわかった数学〜高校3年生理系078〜極値(2)極値を求める

アイキャッチ画像
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 極値(2)\\
f(x)=x^2e^{-|x-a|} (a \gt 2)\ の極値を求めよ。
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{2}}}\ y=x^3-xにより定まる座標平面上の曲線をCとする。C上の点P(\alpha,\alpha^3-\alpha)を通り、\\
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。\\
(1)\alphaのとりうる値の範囲を求めよ。\\
(2)Cとlの点P以外の2つの交点のx座標を\beta,\gammaとする。ただし\beta \lt \gammaとする。\\
\beta^2+\beta\gamma+\gamma^2-1≠0 となることを示せ。\\
(3)(2)の\beta,\gammaを用いて、\\
u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}\\
と定める。このとき、uの取りうる値の範囲を求めよ。
\end{eqnarray}

2022東京大学文系過去問
この動画を見る 

大学入試問題「明日の2次試験にでる問題」 ハルハルさんの名作(過去1番) 体感偏差値は72

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$T=\displaystyle \frac{(x+y+z)^3}{x^3+y^3+z^3}$
$\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}+\displaystyle \frac{1}{z}=0$のとき
$T$のとりうる値の範囲を求めよ
この動画を見る 

埼玉大 微分積分 三次関数極値の差 ヨビノリ技

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+ax^2+bx$は原点で$y=-x$に接し、
$($極大値$)-($極小値$)=4,$
$($極大値$)+($極小値$) \gt 0$である。
$a,b$の値を求めよ

出典:2018年埼玉大学 過去問
この動画を見る 

大学入試問題#439「国立大学らしい綺麗な問題」 群馬大学(2015) #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。

(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$

出典:2015年群馬大学 入試問題
この動画を見る 
PAGE TOP