絶対に落としたくない問題です【自治医科大学】【数学 入試問題】 - 質問解決D.B.(データベース)

絶対に落としたくない問題です【自治医科大学】【数学 入試問題】

問題文全文(内容文):
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。


自治医科大過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$f(x)$は,等式$f(x)=3x^2 \displaystyle \int_{-1}^{1} f(t) dt+x+\displaystyle \int_{0}^{1} [{f(t)}]^{2} dt+$
$\displaystyle \int_{0}^{1} f(t) dt$を満たす。
$\displaystyle \int_{0}^{1} f(t) dt \neq 0$とするとき,$f(0)$の値を求めよ。


自治医科大過去問
投稿日:2022.10.31

<関連動画>

大学入試問題#776「シグマの気持ち」 横浜国立大学(1996)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to +\infty } \displaystyle \frac{1}{n}log\{\displaystyle \frac{n}{n}・\displaystyle \frac{n+2}{n}・\displaystyle \frac{n+4}{n}・・・\displaystyle \frac{n+2(n-1)}{n}\}$

出典:1996年横浜国立大学
この動画を見る 

福田の数学〜立教大学2021年理学部第3問〜定積分の漸化式と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#数列#漸化式#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$nを0以上の整数とする。定積分
$I_n=\int_1^e\frac{(\log x)^n}{x^2}\ dx$
について、次の問(1)~(4)に答えよ。ただし、$e$は自然対数の底である。
(1)$I_0, I_1$の値をそれぞれ求めよ。
(2)$I_{n+1}$を$I_n$と$n$を用いて表せ。
(3)$x \gt 0$とする。関数$f(x)=\frac{(\log x)^2}{x}$の増減表を書け。
ただし、極値も増減表に記入すること。
(4)座標平面上の曲線$y=\frac{(\log x)^2}{x}$, x軸と直線$x=e$とで囲まれた図形を、
x軸の周りに1回転させてできる立体の体積Vを求めよ。

2021立教大学理工学部過去問
この動画を見る 

大学入試問題#797「たぶん部分積分でもいけそう」 #名古屋工業大学(2014) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log\ 2}^{log\ 3} \displaystyle \frac{xe^x}{(e^x-1)^2} dx$

出典:2014年名古屋工業大学
この動画を見る 

大学入試問題#629「計算ミスだけ注意」 横浜国立大学後期(2023) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=(log\ x)^2-\displaystyle \int_{1}^{e} f(t) dt$のとき
$f(x)$を求めよ

出典:2023年横浜国立大学 入試問題
この動画を見る 

大学入試問題#628「3分クッキング!」 東邦大学医学部(2015) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東邦大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-2}^{2} \displaystyle \frac{x^2・2^{-x}}{2^x+2^{-x}} dx$

出典:2015年東邦大学医学部 入試問題
この動画を見る 
PAGE TOP