問題文全文(内容文):
実数から実数への関数$f(x)$が
任意の実数$x,y$に対して
$f(x+f(y))=x+f(f(y))$
を満たしている。また$f(2025)=2026$である。
$f(x)$を求めよ。
実数から実数への関数$f(x)$が
任意の実数$x,y$に対して
$f(x+f(y))=x+f(f(y))$
を満たしている。また$f(2025)=2026$である。
$f(x)$を求めよ。
単元:
#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
実数から実数への関数$f(x)$が
任意の実数$x,y$に対して
$f(x+f(y))=x+f(f(y))$
を満たしている。また$f(2025)=2026$である。
$f(x)$を求めよ。
実数から実数への関数$f(x)$が
任意の実数$x,y$に対して
$f(x+f(y))=x+f(f(y))$
を満たしている。また$f(2025)=2026$である。
$f(x)$を求めよ。
投稿日:2025.05.04





