福田の数学〜早稲田大学2024年人間科学部第4問〜関数の増減と接線の傾きの長さ - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年人間科学部第4問〜関数の増減と接線の傾きの長さ

問題文全文(内容文):
$\Large\boxed{4}$ $f(x)$=$x^3$+$ax^2$+$bx$+$\displaystyle\frac{1}{4}a^2$ が$x$=-2 で極値をとり、その値が1であるとき、定数$a$, $b$の値は$a$=$\boxed{\ \ ソ\ \ }$, $b$=$\boxed{\ \ タ\ \ }$ である。このとき、曲線$y$=$f(x)$上の点$(t, f(t))$における接線の傾きは$t$=$\displaystyle\frac{\boxed{チ}}{\boxed{ツ}}$ のとき、最小値$\displaystyle\frac{\boxed{テ}}{\boxed{ト}}$ をとる。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $f(x)$=$x^3$+$ax^2$+$bx$+$\displaystyle\frac{1}{4}a^2$ が$x$=-2 で極値をとり、その値が1であるとき、定数$a$, $b$の値は$a$=$\boxed{\ \ ソ\ \ }$, $b$=$\boxed{\ \ タ\ \ }$ である。このとき、曲線$y$=$f(x)$上の点$(t, f(t))$における接線の傾きは$t$=$\displaystyle\frac{\boxed{チ}}{\boxed{ツ}}$ のとき、最小値$\displaystyle\frac{\boxed{テ}}{\boxed{ト}}$ をとる。
投稿日:2024.05.05

<関連動画>

基本対称式 あれで出そうよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\alpha+\beta+\delta=1 \\
\alpha\beta+\beta\delta+\delta\alpha=2,
\alpha\beta\delta=3
\end{array}
\right.
\end{eqnarray}$
を満たすとき,
①$\dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}+\dfrac{1}{\delta^2}$
②$\dfrac{1}{\alpha^3}+\dfrac{1}{\beta^3}+\dfrac{1}{\delta^3}$の値を求めよ.
この動画を見る 

福田のわかった数学〜高校2年生032〜知って得する平行・垂直条件(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 知って得する平行・垂直条件(1)
2直線
$ax-y-a+1=0 \ldots①$
$(a+2)x-ay+2a=0 \ldots②$
が次の条件を満たすとき、定数$a$の値を求めよ。
(1)平行である  (2)垂直である
この動画を見る 

剰余

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$111^{2021}$を$1111$で割った余りを求めよ.
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第1問〜剰余定理と高次不等式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
kを実数の定数とし、
$f(x)=x^3-(2k-1)x^2+(k^2-k+1)x-k+1$
とする。
(1)$f(k-1)$の値を求めよ。
(2)$|k|\lt 2$のとき、不等式$f(x) \geqq 0$を解け。

2022北海道大学文系過去問
この動画を見る 

ε N論法 #5 √n(n→∞)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \sqrt n=+\infty$
$ε N$論法で証明せよ.
この動画を見る 
PAGE TOP