自作 整数問題 - 質問解決D.B.(データベース)

自作 整数問題

問題文全文(内容文):
$13^n=k^2+672$
自然数$(k,n)$をすべて求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n=k^2+672$
自然数$(k,n)$をすべて求めよ.
投稿日:2020.08.15

<関連動画>

兵庫県立大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
正整数$a$と正の奇数
$p,q$が$2^a+p^2=q^4$を満たしている。

(1)
$q^2-p=2$を証明せよ。

(2)
$q$を全て求めよ。


出典:兵庫県立大学 過去問
この動画を見る 

早稲田の整数問題!標準的なレベルなのでいい練習になります【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の条件を満たす正の整数の組(a,b,n)は?である。
n≧2,bは素数,$a^{2}$=$b^{n}$+225

早稲田大過去問
この動画を見る 

息抜き 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2020^{2020}$を$2019^2$で割った余りを求めよ
この動画を見る 

指数が絡んだ整数問題

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^m - 2^n = 2016$
$m=?$ $n=?$
(mとnは自然数)
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n,X$は自然数である.これを解け.
$2^m+3^n=X^2$
この動画を見る 
PAGE TOP