福田のおもしろ数学374〜365と366を1から365までの整数で割った余りの総和の大小比較 - 質問解決D.B.(データベース)

福田のおもしろ数学374〜365と366を1から365までの整数で割った余りの総和の大小比較

問題文全文(内容文):
$360$を$1,2,3,…,365$で割った余りの総和を$A$、$366$を$1,2,3,…,365$で割った余りの総和を$B$とする。$A$と$B$の大小を比較せよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式
指導講師: 福田次郎
問題文全文(内容文):
$360$を$1,2,3,…,365$で割った余りの総和を$A$、$366$を$1,2,3,…,365$で割った余りの総和を$B$とする。$A$と$B$の大小を比較せよ。
投稿日:2025.01.10

<関連動画>

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

【高校数学】漸化式~基本を丁寧に~ 3-14【数学B】

アイキャッチ画像
単元: #数列#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
漸化式:数列において、その前の項から次の項をただ1通りに定める規則を示す等式
数列{an}が次の2つの条件を満たしているとする。第3項を求めよ。
a1=1, an+1=an+n

次のように定義される数列{an}の初項から第5項までを書け。

この動画を見る 

【高校数学】部分分数分解の分母に二乗があるパターン

アイキャッチ画像
単元: #恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る 

【数B】数列:a1=1,a[n+1]=(a[n]-4)/(a[n]-3) (n=1,2,...)で定められた数列について次の問に答えよ。(1)a2,a3,a4を求め一般項a[n]を推定せよ 他

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
この動画を見る 

宇都宮大 連立漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,a_{n},b_{n}$自然数

$(1+\sqrt{ 2 })^n=a_{n}+b\sqrt{ 2 }$とする

$a^2_{n}-2b^2_{n}=(-1)^n$を示せ

出典:宇都宮大学 過去問
この動画を見る 
PAGE TOP