福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田の数学〜九州大学2023年文系第3問〜ベクトルの平行条件と内積
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。以下の問いに答えよ。
(1)$\overrightarrow{m}$と$\overrightarrow{n}$が平行であるための必要十分条件はD=0であることを示せ。
以下、D≠0とする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}$・$\overrightarrow{v}$=$\overrightarrow{n}$・$\overrightarrow{w}$=1, $\overrightarrow{m}$・$\overrightarrow{w}$=$\overrightarrow{n}$・$\overrightarrow{v}$=0
を満たすものを求めよ。
(3)座標平面上のベクトル$\overrightarrow{q}$に対して
$r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$
を満たす実数$r$と$s$を$\overrightarrow{q}$, $\overrightarrow{v}$, $\overrightarrow{w}$を用いて表せ。
2023九州大学文系過去問
この動画を見る
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。以下の問いに答えよ。
(1)$\overrightarrow{m}$と$\overrightarrow{n}$が平行であるための必要十分条件はD=0であることを示せ。
以下、D≠0とする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}$・$\overrightarrow{v}$=$\overrightarrow{n}$・$\overrightarrow{w}$=1, $\overrightarrow{m}$・$\overrightarrow{w}$=$\overrightarrow{n}$・$\overrightarrow{v}$=0
を満たすものを求めよ。
(3)座標平面上のベクトル$\overrightarrow{q}$に対して
$r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$
を満たす実数$r$と$s$を$\overrightarrow{q}$, $\overrightarrow{v}$, $\overrightarrow{w}$を用いて表せ。
2023九州大学文系過去問
福田の数学〜九州大学2023年文系第2問〜2直線のなす角と外接円の半径
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xy平面上の曲線C:$y$=$x^3$-$x$ を考える。変数$t$>0に対して、曲線C上の点A($t$, $t^3$-$t$)における接線を$l$とする。直線$l$と直線$y$=-$x$の交点をB、三角形OABの外接円の中心をPとする。以下の問いに答えよ。
(1)点Bの座標を$t$を用いて表せ。
(2)θ=$\angle$OBAとする。$\sin^2\theta$を$t$を用いて表せ。
(3)$f(t)$=$\frac{OP}{OA}$とする。$t$>0のとき、$f(t)$を最小にする$t$の値と$f(t)$の最小値を求めよ。
2023九州大学文系過去問
この動画を見る
$\Large\boxed{2}$ xy平面上の曲線C:$y$=$x^3$-$x$ を考える。変数$t$>0に対して、曲線C上の点A($t$, $t^3$-$t$)における接線を$l$とする。直線$l$と直線$y$=-$x$の交点をB、三角形OABの外接円の中心をPとする。以下の問いに答えよ。
(1)点Bの座標を$t$を用いて表せ。
(2)θ=$\angle$OBAとする。$\sin^2\theta$を$t$を用いて表せ。
(3)$f(t)$=$\frac{OP}{OA}$とする。$t$>0のとき、$f(t)$を最小にする$t$の値と$f(t)$の最小値を求めよ。
2023九州大学文系過去問
福田の数学〜九州大学2023年文系第1問〜放物線と直線で囲まれた面積
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを0<a<9 を満たす実数とする。xy平面上の曲線Cと直線lを、次のように定める。
C:$y$=|($x$-3)($x$+3)|, l:$y$=$a$
曲線Cと直線lで囲まれる図形のうち、$y$≧$a$の領域にある部分の面積を$S_1$、$y$≦$a$の領域にある部分の面積を$S_2$とする。$S_1$=$S_2$となる$a$の値を求めよ。
2023九州大学文系過去問
この動画を見る
$\Large\boxed{1}$ aを0<a<9 を満たす実数とする。xy平面上の曲線Cと直線lを、次のように定める。
C:$y$=|($x$-3)($x$+3)|, l:$y$=$a$
曲線Cと直線lで囲まれる図形のうち、$y$≧$a$の領域にある部分の面積を$S_1$、$y$≦$a$の領域にある部分の面積を$S_2$とする。$S_1$=$S_2$となる$a$の値を求めよ。
2023九州大学文系過去問
福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積
単元:
#大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xy平面上の曲線Cを、媒介変数$t$を用いて次のように定める。
$x$=$t$+2$\sin^2t$, $y$=$t$+$\sin t$ (0<$t$<$\pi$)
以下の問いに答えよ。
(1)曲線Cに接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち$y$≦$x$の領域にある部分と直線$y$=$x$で囲まれた図形の面積を求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{5}$ xy平面上の曲線Cを、媒介変数$t$を用いて次のように定める。
$x$=$t$+2$\sin^2t$, $y$=$t$+$\sin t$ (0<$t$<$\pi$)
以下の問いに答えよ。
(1)曲線Cに接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち$y$≦$x$の領域にある部分と直線$y$=$x$で囲まれた図形の面積を求めよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART2
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART1
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART2
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART1
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第2問〜数列の収束発散の判定
単元:
#大学入試過去問(数学)#数列#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$を実数とする。数列$\left\{a_n\right\}$が
$a_1$=$\alpha$, $a_{n+1}$=|$a_n$-1|+$a_n$-1 (n=1,2,3,...)
で定められるとき、以下の問いに答えよ。
(1)$\alpha$≦1のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(2)$\alpha$>2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(3)1<$\alpha$<$\frac{3}{2}$のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(4)$\frac{3}{2}≦\alpha$<2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{2}$ $\alpha$を実数とする。数列$\left\{a_n\right\}$が
$a_1$=$\alpha$, $a_{n+1}$=|$a_n$-1|+$a_n$-1 (n=1,2,3,...)
で定められるとき、以下の問いに答えよ。
(1)$\alpha$≦1のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(2)$\alpha$>2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(3)1<$\alpha$<$\frac{3}{2}$のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(4)$\frac{3}{2}≦\alpha$<2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
2023九州大学理系過去問
福田の数学〜九州大学2023年理系第1問〜複素数平面上の三角形の形状
単元:
#大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)4次方程式$x^4$-2$x^3$+3$x^2$-2$x$+1=0 を解け。
(2)複素数平面上の$\triangle$ABCの頂点を表す複素数をそれぞれ$\alpha$, $\beta$, $\gamma$とする。
$(\alpha-\beta)^4$+$(\beta-\gamma)^4$+$(\gamma-\alpha)^4=0$
が成り立つとき、$\triangle$ABCはどのような三角形になるか答えよ。
2023九州大学理系過去問
この動画を見る
$\Large\boxed{1}$ 以下の問いに答えよ。
(1)4次方程式$x^4$-2$x^3$+3$x^2$-2$x$+1=0 を解け。
(2)複素数平面上の$\triangle$ABCの頂点を表す複素数をそれぞれ$\alpha$, $\beta$, $\gamma$とする。
$(\alpha-\beta)^4$+$(\beta-\gamma)^4$+$(\gamma-\alpha)^4=0$
が成り立つとき、$\triangle$ABCはどのような三角形になるか答えよ。
2023九州大学理系過去問
福田の数学〜名古屋大学2023年文系第3問〜復元抽出と非復元抽出での確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 数字1が書かれた球が2個、数字2が書かれた球が2個、数字3が書かれた球が2個、数字4が書かれた球が2個、合わせて8個の球が袋に入っている。カードを8枚用意し、次の試行を8回行う。
袋から球を1個取り出し、数字kが書かれていたとき、
・残っているカードの枚数がk以上の場合、カードを1枚取り除く。
・残っているカードの枚数がk未満の場合、カードは取り除かない。
(1)取り出した球を毎回袋の中に戻すとき、8回の試行のあとでカードが1枚だけ残っている確率を求めよ。
(2)取り出した球を袋の中に戻さないとき、8回の試行の後でカードが残っていない確率を求めよ。
2023名古屋大学文系過去問
この動画を見る
$\Large\boxed{3}$ 数字1が書かれた球が2個、数字2が書かれた球が2個、数字3が書かれた球が2個、数字4が書かれた球が2個、合わせて8個の球が袋に入っている。カードを8枚用意し、次の試行を8回行う。
袋から球を1個取り出し、数字kが書かれていたとき、
・残っているカードの枚数がk以上の場合、カードを1枚取り除く。
・残っているカードの枚数がk未満の場合、カードは取り除かない。
(1)取り出した球を毎回袋の中に戻すとき、8回の試行のあとでカードが1枚だけ残っている確率を求めよ。
(2)取り出した球を袋の中に戻さないとき、8回の試行の後でカードが残っていない確率を求めよ。
2023名古屋大学文系過去問
福田の数学〜名古屋大学2023年文系第2問〜空間図形と体積の最小
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#式と証明#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。
2023名古屋大学文系過去問
この動画を見る
$\Large\boxed{2}$ 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。
2023名古屋大学文系過去問
福田の数学〜名古屋大学2023年文系第1問〜3次関数と2次関数のグラフ
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。
2023名古屋大学文系過去問
この動画を見る
$\Large\boxed{1}$ aを実数とし、2つの関数$f(x)=x^3-(a+2)x^2+2a+1 $と$g(x)$=$-x^2+1$ を考える。
(1)$f(x)$-$g(x)$ を因数分解せよ。
(2)y=$f(x)$とy=$g(x)$のグラフの共有点が2個であるようなaを求めよ。
(3)aは(2)の条件を満たし、さらに$f(x)$の極大値は1よりも大きいとする。
y=$f(x)$とy=$g(x)$のグラフを同じ座標平面に図示せよ。
2023名古屋大学文系過去問
福田の数学〜名古屋大学2023年理系第4問〜二項係数と整式の展開
単元:
#数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$n$次の整式$P_n(x)$=$x(x+1)...(x+n-1)$を展開して$P_n(x)$=$\displaystyle\sum_{m=1}^n {}_nB_mx^m$と表す。
(1)等式$\displaystyle\sum_{m=1}^n {}_nB_m$=$n!$ を示せ。
(2)等式$P_n(x+1)$=$\displaystyle\sum_{m=1}^n$(${}_nB_m・{}_mC_0$+${}_nB_m・{}_mC_1x$+...+${}_nB_m・{}_mC_mx^m)$ を示せ。
ただし、${}_mC_0$, ${}_mC_1$,..., ${}_mC_m$は二項係数である。
(3)k=1,2,...,nに対して、等式$\displaystyle\sum_{j=k}^n$${}_nB_j・{}_jC_k$=${}_{n+1}B_{k+1}$を示せ。
2023名古屋大学理系過去問
この動画を見る
$\Large\boxed{4}$ $n$を正の整数とし、$n$次の整式$P_n(x)$=$x(x+1)...(x+n-1)$を展開して$P_n(x)$=$\displaystyle\sum_{m=1}^n {}_nB_mx^m$と表す。
(1)等式$\displaystyle\sum_{m=1}^n {}_nB_m$=$n!$ を示せ。
(2)等式$P_n(x+1)$=$\displaystyle\sum_{m=1}^n$(${}_nB_m・{}_mC_0$+${}_nB_m・{}_mC_1x$+...+${}_nB_m・{}_mC_mx^m)$ を示せ。
ただし、${}_mC_0$, ${}_mC_1$,..., ${}_mC_m$は二項係数である。
(3)k=1,2,...,nに対して、等式$\displaystyle\sum_{j=k}^n$${}_nB_j・{}_jC_k$=${}_{n+1}B_{k+1}$を示せ。
2023名古屋大学理系過去問
福田の数学〜名古屋大学2023年理系第3問〜方程式の負の実数解の個数
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ (1)方程式$e^x$=$\frac{2x^3}{x-1}$ の負の実数解の個数を求めよ。
(2)$y$=$x(x^2-3)$と$y$=$e^x$のグラフの$x$<0における共有点の個数を求めよ。
(3)$a$を正の実数とし、関数$f(x)$=$x(x^2-a)$を考える。$y$=$f(x)$と$y$=$e^x$のグラフの$x$<0における共有点は1個のみであるとする。このような$a$がただ1つ存在することを示せ。
2023名古屋大学理系過去問
この動画を見る
$\Large\boxed{3}$ (1)方程式$e^x$=$\frac{2x^3}{x-1}$ の負の実数解の個数を求めよ。
(2)$y$=$x(x^2-3)$と$y$=$e^x$のグラフの$x$<0における共有点の個数を求めよ。
(3)$a$を正の実数とし、関数$f(x)$=$x(x^2-a)$を考える。$y$=$f(x)$と$y$=$e^x$のグラフの$x$<0における共有点は1個のみであるとする。このような$a$がただ1つ存在することを示せ。
2023名古屋大学理系過去問
福田の数学〜名古屋大学2023年理系第2問〜回転体の体積と関数の増減と最大
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#面積、体積#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。
2023名古屋大学理系過去問
この動画を見る
$\Large\boxed{2}$ 0<b<a とする。xy平面において、原点を中心とする半径rの円Cと点(a, 0)を中心とする半径bの円Dが2点で交わっている。
(1)半径rの満たすべき条件を求めよ。
(2)CとDの交点のうちy座標が正のものをPとする。Pのx座標h(r)を求めよ。
(3)点Q(r, 0)と点R(a-b, 0)をとる。Dの内部にあるCの弧PQ、線分QR、および線分RPで囲まれる図形をAとする。xyz空間においてAをx軸の周りに1回転して得られる立体の体積V(r)を求めよ。ただし答えにh(r)を用いてもよい。
(4)(3)の最大値を与えるrを求めよ。また、そのrをr(a)とおいたとき、
$\displaystyle\lim_{a \to \infty}(r(a)-a)$を求めよ。
2023名古屋大学理系過去問
福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。
2023名古屋大学理系過去問
この動画を見る
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。
2023名古屋大学理系過去問
福田の数学〜一橋大学2023年文系第5問〜反復試行の確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{5}$ A, B, Cの3人が、A, B, C, A, B, C, A, ... という順番にさいころを投げ、最初に1を出した人を勝ちとする。だれかが1を出すか、全員が$n$回ずつ投げたら、ゲームを終了する。A, B, Cが勝つ確率$P_A$, $P_B$, $P_C$をそれぞれ求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第4問〜群数列
単元:
#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{4}$ xy平面上で、x座標とy座標がともに正の整数であるような各点に、下の図のような番号をつける。(※動画参照)点(m, n)につけた番号をf(m, n)とする。
たとえば、$f(1, 1)=1, f(3, 4)=19$ である。
(1)$f(m, n)+f(m+1, n+1)=2f(m, n+1)$
が成り立つことを示せ。
(2)$f(m, n)+f(m+1, n)+f(m, n+1)+f(m+1, n+1)=2023$
となるような整数の組(m, n)を求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第3問〜ベクトルと四面体の体積の最大
単元:
#大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{3}$ 原点をOとする座標空間内に3点A(-3, 2, 0), B(1, 5, 0), C(4, 5, 1)がある。
Pは|$\overrightarrow{PA}$+3$\overrightarrow{PB}$+2$\overrightarrow{PC}$|≦36 を満たす点である。
4点O, A, B, Pが同一平面上にないとき、四面体OABPの体積の最大値を求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第2問〜共通接線が存在する条件
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ aを正の実数とする。2つの曲線$C_1$:y=$x^3$+2$ax^2$ および$C_2$:y=3$ax^2$$-\displaystyle\frac{3}{a}$ の両方に接する直線が存在するようなaの範囲を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{2}$ aを正の実数とする。2つの曲線$C_1$:y=$x^3$+2$ax^2$ および$C_2$:y=3$ax^2$$-\displaystyle\frac{3}{a}$ の両方に接する直線が存在するようなaの範囲を求めよ。
2023一橋大学文系過去問
福田の数学〜一橋大学2023年文系第1問〜コンビネーションの等式を満たす自然数
単元:
#数A#大学入試過去問(数学)#場合の数と確率#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。
2023一橋大学文系過去問
この動画を見る
$\Large\boxed{1}$ nを2以上20以下の整数、kを1以上n-1以下の整数とする。
${}_{n+2}C_{k+1}$=2(${}_nC_{k-1}$+${}_nC_{k+1}$)
が成り立つような整数の組(n, k)を求めよ。
2023一橋大学文系過去問
福田の数学〜東北大学2023年文系第4問〜線分の通過範囲の面積
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数f(x)に対して、座標平面上の2つの点P(x, f(x)), Q(x+1, f(x)+1)を考える。実数xが0≦x≦2の範囲を動くとき、線分PQがつうかしてできる図形の面積をSとおく。以下の問いに答えよ。
(1)関数f(x)=-2|x-1|+2に 対して、Sの値を求めよ。
(2)関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、曲線y=f(x)の接線で、傾きが1のものの方程式を求めよ。
(3)設問(2)の関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、Sの値を求めよ。
2023東北大学文系過去問
この動画を見る
$\Large\boxed{4}$ 関数f(x)に対して、座標平面上の2つの点P(x, f(x)), Q(x+1, f(x)+1)を考える。実数xが0≦x≦2の範囲を動くとき、線分PQがつうかしてできる図形の面積をSとおく。以下の問いに答えよ。
(1)関数f(x)=-2|x-1|+2に 対して、Sの値を求めよ。
(2)関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、曲線y=f(x)の接線で、傾きが1のものの方程式を求めよ。
(3)設問(2)の関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、Sの値を求めよ。
2023東北大学文系過去問
福田の数学〜東北大学2023年文系第3問〜軸の動く最大最小
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。
2023東北大学文系過去問
この動画を見る
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。
2023東北大学文系過去問
福田の数学〜東北大学2023年文系第1問〜三角形の面積と内接円と外接円の半径
単元:
#数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#三角関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。
2023東北大学文系過去問
この動画を見る
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。
2023東北大学文系過去問
福田の数学〜東北大学2023年理系第6問〜線分の通過範囲の面積
単元:
#大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ 関数$f(x)$=$-\frac{1}{2}x$$-\frac{4}{6x+1}$について、以下の問いに答えよ。
(1)曲線y=f(x)の接線で、傾きが1であり、かつ接点のx座標が正であるものの方程式を求めよ。
(2)座標平面上の2点P(x, f(x)), Q(x+1, f(x)+1)を考える。xが0≦x≦2の範囲を動くとき、線分PQが通過してできる図形Sの概形を描け。またSの面積を求めよ。
2023東北大学理系過去問
この動画を見る
$\Large\boxed{6}$ 関数$f(x)$=$-\frac{1}{2}x$$-\frac{4}{6x+1}$について、以下の問いに答えよ。
(1)曲線y=f(x)の接線で、傾きが1であり、かつ接点のx座標が正であるものの方程式を求めよ。
(2)座標平面上の2点P(x, f(x)), Q(x+1, f(x)+1)を考える。xが0≦x≦2の範囲を動くとき、線分PQが通過してできる図形Sの概形を描け。またSの面積を求めよ。
2023東北大学理系過去問
福田の数学〜東北大学2023年理系第5問〜空間ベクトルと内積
単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 四面体OABCにおいて、$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおき、次が成り立つとする。
$\angle$AOB=60°, |$\overrightarrow{a}$|=2, |$\overrightarrow{b}$|=3, |$\overrightarrow{c}$|=$\sqrt 6$, $\overrightarrow{b}$・$\overrightarrow{c}$=3
ただし、$\overrightarrow{b}$・$\overrightarrow{c}$は、2つのベクトル$\overrightarrow{b}$と$\overrightarrow{c}$の内積を表す。さらに、線分OCと線分ABは垂直であるとする。点Cから3点O, A, Bを含む平面に下ろした垂線をCHとし、点Oから3点A, B, Cを含む平面に下ろした垂線をOKとする。
(1)$\overrightarrow{a}$・$\overrightarrow{b}$と$\overrightarrow{c}$・$\overrightarrow{a}$を求めよ。
(2)ベクトル$\overrightarrow{OH}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ。
(3)ベクトル$\overrightarrow{c}$とベクトル$\overrightarrow{HK}$は平行であることを示せ。
2023東北大学理系過去問
この動画を見る
$\Large\boxed{5}$ 四面体OABCにおいて、$\overrightarrow{a}$=$\overrightarrow{OA}$, $\overrightarrow{b}$=$\overrightarrow{OB}$, $\overrightarrow{c}$=$\overrightarrow{OC}$とおき、次が成り立つとする。
$\angle$AOB=60°, |$\overrightarrow{a}$|=2, |$\overrightarrow{b}$|=3, |$\overrightarrow{c}$|=$\sqrt 6$, $\overrightarrow{b}$・$\overrightarrow{c}$=3
ただし、$\overrightarrow{b}$・$\overrightarrow{c}$は、2つのベクトル$\overrightarrow{b}$と$\overrightarrow{c}$の内積を表す。さらに、線分OCと線分ABは垂直であるとする。点Cから3点O, A, Bを含む平面に下ろした垂線をCHとし、点Oから3点A, B, Cを含む平面に下ろした垂線をOKとする。
(1)$\overrightarrow{a}$・$\overrightarrow{b}$と$\overrightarrow{c}$・$\overrightarrow{a}$を求めよ。
(2)ベクトル$\overrightarrow{OH}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ。
(3)ベクトル$\overrightarrow{c}$とベクトル$\overrightarrow{HK}$は平行であることを示せ。
2023東北大学理系過去問
福田の数学〜東北大学2023年理系第4問〜1の5乗根
単元:
#数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。
2023東北大学理系過去問
この動画を見る
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。
2023東北大学理系過去問
福田の数学〜東北大学2023年理系第3問〜漸化式と数列の和
単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ sを実数とし、数列$\left\{a_n\right\}$を
$a_1$=s, (n+2)$a_{n+1}$=n$a_n$+2 (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)$a_n$をnとsを用いて表せ。
(2)ある正の整数$m$に対して、$\displaystyle\sum_{n=1}^ma_n$=0が成り立つとする。sをmを用いて表せ。
2023東北大学理系過去問
この動画を見る
$\Large\boxed{3}$ sを実数とし、数列$\left\{a_n\right\}$を
$a_1$=s, (n+2)$a_{n+1}$=n$a_n$+2 (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)$a_n$をnとsを用いて表せ。
(2)ある正の整数$m$に対して、$\displaystyle\sum_{n=1}^ma_n$=0が成り立つとする。sをmを用いて表せ。
2023東北大学理系過去問