福田次郎
福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田の数学〜慶應義塾大学2025経済学部第3問〜反復試行の確率と条件付き確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$2$枚の硬貨を同時に投げることを試行という。
各回の試行において、座標平面上の点$P$は
次の$(A),(B),(C)$に従って座標平面を移動する。
$(A)$ 点$P$が$(x,y)$にあるとき、表が$2$枚出れば
$(x+1,y+\sqrt3)$に移動する。
$(B)$ 点$P$が$(x,y)$にあるとき、裏が$2$枚出れば
$(x+1,y-\sqrt3)$に移動する。
$(C)$点$P$が$(1,\sqrt3)$にあるとき、
表と裏が$1$枚ずつ出れば
$(x-2,y)$に移動する。
例えば、点$P$が$(1,\sqrt3)$にあるとき、
裏が$2$枚出れば、点$P$は$(2,0)$に移動する。
(1)$1$回目の試行前に原点にある点$P$が、
$3$回目の試行後原点にある確率は
$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。
(2)$1$回目の試行前に原点がある点$P$が、
$3$回目の試行前に$y$軸上にある確率は
$\dfrac{\boxed{エ}}{\boxed{オ}}$
(3)$1$回目の試行前に原点がある点$P$が、
$5$回目の試行前に$x$軸上にある確率は
$\dfrac{\boxed{カキ}}{\boxed{クケコ}}$である。
(4)$1$回目の試行前に原点にある点$P$が、
$5$回目の試行後に$x$軸上にあるとき。
$8$回目の試行後に円$x^2+y^2=4$上にある
条件付き確率は$\dfrac{\boxed{サシ}}{\boxed{スセソ}}$である。
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{3}$
$2$枚の硬貨を同時に投げることを試行という。
各回の試行において、座標平面上の点$P$は
次の$(A),(B),(C)$に従って座標平面を移動する。
$(A)$ 点$P$が$(x,y)$にあるとき、表が$2$枚出れば
$(x+1,y+\sqrt3)$に移動する。
$(B)$ 点$P$が$(x,y)$にあるとき、裏が$2$枚出れば
$(x+1,y-\sqrt3)$に移動する。
$(C)$点$P$が$(1,\sqrt3)$にあるとき、
表と裏が$1$枚ずつ出れば
$(x-2,y)$に移動する。
例えば、点$P$が$(1,\sqrt3)$にあるとき、
裏が$2$枚出れば、点$P$は$(2,0)$に移動する。
(1)$1$回目の試行前に原点にある点$P$が、
$3$回目の試行後原点にある確率は
$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。
(2)$1$回目の試行前に原点がある点$P$が、
$3$回目の試行前に$y$軸上にある確率は
$\dfrac{\boxed{エ}}{\boxed{オ}}$
(3)$1$回目の試行前に原点がある点$P$が、
$5$回目の試行前に$x$軸上にある確率は
$\dfrac{\boxed{カキ}}{\boxed{クケコ}}$である。
(4)$1$回目の試行前に原点にある点$P$が、
$5$回目の試行後に$x$軸上にあるとき。
$8$回目の試行後に円$x^2+y^2=4$上にある
条件付き確率は$\dfrac{\boxed{サシ}}{\boxed{スセソ}}$である。
$2025$年慶應義塾大学経済学部過去問題
福田のおもしろ数学505〜フィボナッチ数列の性質

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
フィボナッチ数列$\{f_n\}$
$f_1=f_2=1,f_{n+2}=f_{n+1}+f_n$
に対し、
$f_m・f_n=mn$
を満たす自然数の組$(m,n)$をすべて求めて下さい。
この動画を見る
フィボナッチ数列$\{f_n\}$
$f_1=f_2=1,f_{n+2}=f_{n+1}+f_n$
に対し、
$f_m・f_n=mn$
を満たす自然数の組$(m,n)$をすべて求めて下さい。
福田の数学〜慶應義塾大学2025経済学部第2問〜数列の和から一般項を求める

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
数列$\{a_n\}$に対して
$T_n=\displaystyle \sum_{k=1}^n \dfrac{(k+2)!}{(k-1)!}a_k (n=1,2,3,\cdots)$
とおくとき、
$T_n=\left(n-\dfrac{1}{2}\right)^2 (n=1,2,3,\cdots)$
が成り立つとする。ただし、$0!=1$である。
(1)$a_1=\dfrac{\boxed{ア}}{\boxed{イウ}},a_2=\dfrac{\boxed{エ}}{\boxed{オ}}$である。
(2)$n\geqq 2$に対して$T_n-T_{n-1}=\boxed{カ}n-\boxed{キ}$が
成り立つから、
$a_n=r^n\dfrac{n-\boxed{ク}}{(n+s)(n+t)(n+u)} (n=2,3,4,\cdots)$
である。ただし、ここに$r=\boxed{ケ}$であり、
$s\lt t \lt u$として$s=\boxed{コ},t=\boxed{サ},u=\boxed{シ}$である。
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{2}$
数列$\{a_n\}$に対して
$T_n=\displaystyle \sum_{k=1}^n \dfrac{(k+2)!}{(k-1)!}a_k (n=1,2,3,\cdots)$
とおくとき、
$T_n=\left(n-\dfrac{1}{2}\right)^2 (n=1,2,3,\cdots)$
が成り立つとする。ただし、$0!=1$である。
(1)$a_1=\dfrac{\boxed{ア}}{\boxed{イウ}},a_2=\dfrac{\boxed{エ}}{\boxed{オ}}$である。
(2)$n\geqq 2$に対して$T_n-T_{n-1}=\boxed{カ}n-\boxed{キ}$が
成り立つから、
$a_n=r^n\dfrac{n-\boxed{ク}}{(n+s)(n+t)(n+u)} (n=2,3,4,\cdots)$
である。ただし、ここに$r=\boxed{ケ}$であり、
$s\lt t \lt u$として$s=\boxed{コ},t=\boxed{サ},u=\boxed{シ}$である。
$2025$年慶應義塾大学経済学部過去問題
福田のおもしろ数学504〜三角関数の最大値

単元:
#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$x$がすべての実数を動くとき
$\sin(\cos x)+\cos(\sin x)$の最大値を求めよ。
この動画を見る
$x$がすべての実数を動くとき
$\sin(\cos x)+\cos(\sin x)$の最大値を求めよ。
福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域

単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
福田のおもしろ数学503〜複雑な三角方程式が実数解をもつ条件

単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\cos^2\pi(a-x)-2\cos \pi(a-x)$
$+\cos\dfrac{3\pi x}{2a}\cos \left(\dfrac{\pi x}{2a}+\dfrac{\pi}{3}\right)+2=0$
が実数解をもつような
自然数$a$の最小値を求めよ。
この動画を見る
$\cos^2\pi(a-x)-2\cos \pi(a-x)$
$+\cos\dfrac{3\pi x}{2a}\cos \left(\dfrac{\pi x}{2a}+\dfrac{\pi}{3}\right)+2=0$
が実数解をもつような
自然数$a$の最小値を求めよ。
福田の数学〜慶應義塾大学2025経済学部第1問(1)〜三角形の面積と線分の長さ

単元:
#数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。
座標平面上の$4$点$O,A,B,C$を、
$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$
$C(5\cos3\alpha,5\sin3\alpha)$とする。
(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、
辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。
(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。
(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$
$2025$年慶應義塾大学経済学部過去問題
この動画を見る
$\boxed{1}$
(1)$\sin \alpha=\dfrac{3}{5},\cos \alpha=\dfrac{4}{5}$とする。
座標平面上の$4$点$O,A,B,C$を、
$O(0,0),A(5,0),B(5\cos\alpha,5\sin\alpha),$
$C(5\cos3\alpha,5\sin3\alpha)$とする。
(a)$\triangle OAB$の面積は$\dfrac{\boxed{アイ}}{\boxed{ウ}}$、
辺$AB$の長さは$\sqrt{\boxed{エオ}}$である。
(b)$\triangle OBC$の面積は$\boxed{カキ}$、辺$AB$の長さは$\boxed{ク}$である。
(c)線分$AC$の長さは$\dfrac{\boxed{ケコ}}{\boxed{サ}}\sqrt{\boxed{シス}}$
$2025$年慶應義塾大学経済学部過去問題
福田のおもしろ数学502〜(n/10)^(n/10)の最小となるnを求める

単元:
#数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\left(\dfrac{n}{10}\right)^{\frac{n}{10}}$を最小にする
自然数$n$を求めて下さい。
この動画を見る
$\left(\dfrac{n}{10}\right)^{\frac{n}{10}}$を最小にする
自然数$n$を求めて下さい。
福田の数学〜名古屋大学2025文系第1問〜放物線が囲む部分の面積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
実数$b,c$に対し、
放物線$y=f(x)=x^2+bx+c$が
$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。
また、条件$0\lt t \leqq 1$を満たす実数$t$に対し
実数$r,s$を次のように定める。
$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$
以下の問いに答えよ。
(1)$q-s,r-p,s+r,s-r$のそれぞれを
$b,c,t$で用いて表せ。
(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。
(3)放物線$y=f(x)$、直線$x=r,x=s$および
$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。
$2025$年名古屋大学文系過去問題
この動画を見る
$\boxed{1}$
実数$b,c$に対し、
放物線$y=f(x)=x^2+bx+c$が
$2$点$(p,0),(q,0)$を通ると仮定する(ただし$p\gt q$)。
また、条件$0\lt t \leqq 1$を満たす実数$t$に対し
実数$r,s$を次のように定める。
$r=\dfrac{1+t}{2}p+\dfrac{1-t}{2}q,s=\dfrac{1-t}{2}p+\dfrac{1+t}{2}q$
以下の問いに答えよ。
(1)$q-s,r-p,s+r,s-r$のそれぞれを
$b,c,t$で用いて表せ。
(2)$sr$および$s^2+r^2$を$b,c,t$を用いて表せ。
(3)放物線$y=f(x)$、直線$x=r,x=s$および
$x$軸が囲む領域の面積を$b,c,t$を用いて表せ。
$2025$年名古屋大学文系過去問題
福田のおもしろ数学501〜√5+√6+…+√13の整数部分が26であることの証明

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\sqrt5+\sqrt6+\cdots +\sqrt{13}$
の整数部分が$26$であることを示せ。
この動画を見る
$\sqrt5+\sqrt6+\cdots +\sqrt{13}$
の整数部分が$26$であることを示せ。
福田の数学〜名古屋大学2025理系第4問〜コインを裏返す操作の確率

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
コイン$①,\cdots,⑥$が下図のようにマス目の中に
置かれている。
これらのコインから無作為にひとつを選び、
選んだコインはそのままにし、
そのコインのあるマス目と
辺を共有して隣接するマス目のコインを裏返す
操作を考える。
例えば、①を選べば、②,④を裏返し、
②を選べば、①,③,⑤を繰り返す。
最初はすべてのコインが
表向きに置かれていたとする。
正の整数$n$に対し、
$n$回目の操作終了時点ですべてのコインが
裏向きである確率$p_n$とするとき、
以下の問いに答えよ。
(1)$p_2$を求めよ。
(2)コイン$①,\cdots,⑥$をグループ$A,B$に
分けることによって、
$n$回目の操作終了時点ですべてのコインが
裏向きであるための必要十分条件を
次の形に表すことができる。
図は動画内参照
$2025$年名古屋大学理系過去問題
この動画を見る
$\boxed{4}$
コイン$①,\cdots,⑥$が下図のようにマス目の中に
置かれている。
これらのコインから無作為にひとつを選び、
選んだコインはそのままにし、
そのコインのあるマス目と
辺を共有して隣接するマス目のコインを裏返す
操作を考える。
例えば、①を選べば、②,④を裏返し、
②を選べば、①,③,⑤を繰り返す。
最初はすべてのコインが
表向きに置かれていたとする。
正の整数$n$に対し、
$n$回目の操作終了時点ですべてのコインが
裏向きである確率$p_n$とするとき、
以下の問いに答えよ。
(1)$p_2$を求めよ。
(2)コイン$①,\cdots,⑥$をグループ$A,B$に
分けることによって、
$n$回目の操作終了時点ですべてのコインが
裏向きであるための必要十分条件を
次の形に表すことができる。
図は動画内参照
$2025$年名古屋大学理系過去問題
福田のおもしろ数学500〜循環形式の連立方程式を解こう

単元:
#連立方程式#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x-1)(y^2+6)=y(x^2+1) \\
(y-1)(x^2+6)=x(y^2+1)
\end{array}
\right.
\end{eqnarray}$
を満たす実数$x,y$をすべて求めて下さい。
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x-1)(y^2+6)=y(x^2+1) \\
(y-1)(x^2+6)=x(y^2+1)
\end{array}
\right.
\end{eqnarray}$
を満たす実数$x,y$をすべて求めて下さい。
福田の数学〜名古屋大学2025理系第3問〜球の通過範囲の体積

単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
以下の問いに答えよ。
(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。
$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の
円周およびその内部を$C$とする。
$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ
回転させるとき、$C$が通過する領域の面積を求めよ。
(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。
$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の
球面およびその内部を$B$とする。
$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、
$B$が通過する領域の体積を求めよ。
ただし、回転の向きは回転後の$B$の中心が
$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。
$2025$年名古屋大学理系過去問題
この動画を見る
$\boxed{3}$
以下の問いに答えよ。
(1)実数$r,\alpha$は$0\lt r \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。
$xy$平面内で、点$(1,0)$を中心にもつ半径$r$の
円周およびその内部を$C$とする。
$C$を原点$(0,0)$を中心に反時計回りに角度$\alpha$だけ
回転させるとき、$C$が通過する領域の面積を求めよ。
(2)実数$R,\alpha$は$0\lt R \leqq 1,0\leqq \alpha \lt \pi$をみたすとする。
$xyz$空間内で、点$(1,0,0)$を中心にもつ半径$R$の
球面およびその内部を$B$とする。
$B$を$z$軸のまわりに角度$\alpha$だけ回転させるとき、
$B$が通過する領域の体積を求めよ。
ただし、回転の向きは回転後の$B$の中心が
$(\cos \alpha,\sin \alpha,0)$になるように選ぶものとする。
$2025$年名古屋大学理系過去問題
福田のおもしろ数学499〜1分チャレンジ!数値計算

単元:
#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\dfrac{(4\times 7+2)(6\times 9+2)(8\times 11+2)\cdots}{(5\times 8 +2)(7\times 10 +2)(9\times 12 +2)\cdots }$
$\dfrac{\cdots (100\times 103+2)}{\cdots (99\times 102+2)}$
を計算して下さい。
この動画を見る
$\dfrac{(4\times 7+2)(6\times 9+2)(8\times 11+2)\cdots}{(5\times 8 +2)(7\times 10 +2)(9\times 12 +2)\cdots }$
$\dfrac{\cdots (100\times 103+2)}{\cdots (99\times 102+2)}$
を計算して下さい。
福田の数学〜名古屋大学2025理系第2問〜不定方程式の整数解

単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
整数$a,b,c$に対し次の条件を考える。
(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$
以下の問いに答えよ。
(1)$c=24,25,26$それぞれの場合に
条件(*)をみたす
整数の組$(a,b)$をすべて求めよ。
(2)$p$は$3$以上の素数、$n$は正の整数、
$c=4p^{2n}$とする。
このとき、条件(*)をみたす整数の組$(a,b)$を
すべて求めよ。
$2025$年名古屋大学理系過去問題
この動画を見る
$\boxed{2}$
整数$a,b,c$に対し次の条件を考える。
(*)$ a\geqq b \geqq 0$かつ$a^2-b^2=c$
以下の問いに答えよ。
(1)$c=24,25,26$それぞれの場合に
条件(*)をみたす
整数の組$(a,b)$をすべて求めよ。
(2)$p$は$3$以上の素数、$n$は正の整数、
$c=4p^{2n}$とする。
このとき、条件(*)をみたす整数の組$(a,b)$を
すべて求めよ。
$2025$年名古屋大学理系過去問題
福田のおもしろ数学498〜定積分で定義された関数の極限

単元:
#関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$0\lt t \leqq 1$に対し、
$f(t)=\dfrac{1}{t} \displaystyle \int_{0}^{\frac{\pi}{2}t} \vert \cos 2x \vert dx$とする。
$\displaystyle \lim_{t\to 0} f(t)$を求めよ。
この動画を見る
$0\lt t \leqq 1$に対し、
$f(t)=\dfrac{1}{t} \displaystyle \int_{0}^{\frac{\pi}{2}t} \vert \cos 2x \vert dx$とする。
$\displaystyle \lim_{t\to 0} f(t)$を求めよ。
福田の数学〜名古屋大学2025理系第1問〜関数の増減と最大

単元:
#大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および
第$2$次導関数$f''(x)$をもち、
すべての$x$に対し$f''(x)\gt 0$をみたすとする。
さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。
$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$
このとき、
$a\lt c \lt b$をみたす任意の実数$c$に対し、
関数$g(x)=cx-f(x)$の値を最大にする
$x=x_0$がただひとつ存在することを示せ。
(2)実数$x$を変数とする関数
$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$
はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。
また、この$f$に対し小問(1)の極限値$a,b$を求めよ。
(3)小問(2)の関数$f$および極限値$a,b$を考える。
$a \lt c \lt b$をみたす任意の実数$c$に対し
小問(1)の$x_0$および$g(x_0)$を$c$で表せ。
$2025$年名古屋大学理系過去問題
この動画を見る
$\boxed{1}$
(1)実数$x$を変数とする関数$f(x)$が導関数$f'(x)$および
第$2$次導関数$f''(x)$をもち、
すべての$x$に対し$f''(x)\gt 0$をみたすとする。
さらに以下の極限値$a,b(a\lt b)$が存在すると仮定する。
$\displaystyle \lim_{x\to -\infty} f'(x)=a,\displaystyle \lim_{x\to\infty}f'(x)=b$
このとき、
$a\lt c \lt b$をみたす任意の実数$c$に対し、
関数$g(x)=cx-f(x)$の値を最大にする
$x=x_0$がただひとつ存在することを示せ。
(2)実数$x$を変数とする関数
$f(x)=\log \left(\dfrac{e^x+e^{-x}}{2}\right)$
はすべての$x$に対し$f''(x)\gt 0$をみたすことを示せ。
また、この$f$に対し小問(1)の極限値$a,b$を求めよ。
(3)小問(2)の関数$f$および極限値$a,b$を考える。
$a \lt c \lt b$をみたす任意の実数$c$に対し
小問(1)の$x_0$および$g(x_0)$を$c$で表せ。
$2025$年名古屋大学理系過去問題
福田のおもしろ数学497〜gcdとlcmを使った方程式の整数解

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
正の整数$a,b$が次の式を満たしている。
$ab=gcd(a,b)+Icm(a,b)$
このような$(a,b)$の組をすべて求めて下さい。
$gcd(a,b)$は$a,b$の最大公約数、
$Icm(a,b)$は$a,b$の最小公倍数とする。
この動画を見る
正の整数$a,b$が次の式を満たしている。
$ab=gcd(a,b)+Icm(a,b)$
このような$(a,b)$の組をすべて求めて下さい。
$gcd(a,b)$は$a,b$の最大公約数、
$Icm(a,b)$は$a,b$の最小公倍数とする。
福田の数学〜東京科学大学(旧・東京工業大学)2025理系第5問〜分数関数のグラフと解の存在範囲

単元:
#大学入試過去問(数学)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
(1)関数
$f(t)=\dfrac{t^2-1}{t^3} (t\neq 0)$
の増減を調べ、グラフの概形をかけ。
(2)実数$x,y,z$が、条件
$\begin{eqnarray}
\left\{
\begin{array}{l}
x \lt y \lt z \\
xyz \neq 0 \\\
x^3y^2-x^3=x^2y^3-y^3 \\\
y^3z^2-y^3=y^2z^3-z^3
\end{array}
\right.
\end{eqnarray}$
を満たしながら動くとき、
$x$が取り得る値の範囲を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る
$\boxed{5}$
(1)関数
$f(t)=\dfrac{t^2-1}{t^3} (t\neq 0)$
の増減を調べ、グラフの概形をかけ。
(2)実数$x,y,z$が、条件
$\begin{eqnarray}
\left\{
\begin{array}{l}
x \lt y \lt z \\
xyz \neq 0 \\\
x^3y^2-x^3=x^2y^3-y^3 \\\
y^3z^2-y^3=y^2z^3-z^3
\end{array}
\right.
\end{eqnarray}$
を満たしながら動くとき、
$x$が取り得る値の範囲を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
福田のおもしろ数学496〜少なくとも1つは−1より大きくないことの証明

単元:
#数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
実数$a,b,c,d$が次の式を満たしている。
$a+b+c+d=-2$
$ab+ac+ad+bc+bd+cd=0$
このとき、$a,b,c,d$の少なくとも$1$つは
$-1$より大きくないことを証明して下さい。
この動画を見る
実数$a,b,c,d$が次の式を満たしている。
$a+b+c+d=-2$
$ab+ac+ad+bc+bd+cd=0$
このとき、$a,b,c,d$の少なくとも$1$つは
$-1$より大きくないことを証明して下さい。
福田の数学〜東京科学大学(旧・東京工業大学)2025理系第4問〜フィボナッチ数列と無限級数の和

単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
数列$\{a_n\}$を
$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$
により定め、数列$\{b_n\}$を
$\tan b_n=\dfrac{1}{a_n}$
により定める。
ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。
(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。
(2)$m\geqq 1$($m$は整数)に対して、
$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。
(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る
$\boxed{4}$
数列$\{a_n\}$を
$a_1=a_2=1,a_{n+2}=a_{n+1}+a_n (n=1,2,3,\cdots)$
により定め、数列$\{b_n\}$を
$\tan b_n=\dfrac{1}{a_n}$
により定める。
ただし、$0\lt b_n \lt \dfrac{\pi}{2}$であるものとする。
(1)$n\geqq 2$に対して、$a_{n+1}a_{n-1}-{a_n}^2$を求めよ。
(2)$m\geqq 1$($m$は整数)に対して、
$a_{2m}・\tan(b_{2m+1}+b_{2m+2})$を求めよ。
(3)無限級数$\displaystyle \sum_{m=0}^{\infty} b_{2m+1}$を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
福田のおもしろ数学495〜次数の高い連立方程式

単元:
#連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^3+3ab^2+3ac^2-6abc=1 \\
b^3+3ba^2+3bc^2-6abc=1 \\\
c^2+3ca^2+3cb^2-6abc=1
\end{array}
\right.
\end{eqnarray}$
を満たす実数$a,b,c$を求めよ。
この動画を見る
連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
a^3+3ab^2+3ac^2-6abc=1 \\
b^3+3ba^2+3bc^2-6abc=1 \\\
c^2+3ca^2+3cb^2-6abc=1
\end{array}
\right.
\end{eqnarray}$
を満たす実数$a,b,c$を求めよ。
福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$
$0\lt p\lt 1$とする。
表が出る確率が$p$、裏が出る確率が$1-p$である
$1$枚のコインを使って次のゲームを行う。
・ゲームの開始時点で点数は$0$点
・コインを投げ続け、表が出るごとに$1$点加算し、
裏が出たときは点数はそのまま
・$2$回続けて裏が出たらゲームは終了。
$0$以上の整数$n$に対し、ゲームが終わったときに
$n$点となっている確率を$Q_n$とする。
(1)$Q_1,Q_2$を$p$を用いて表せ。
(2)$Q_2$を$n$と$p$を用いて表せ。
(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が
成り立つことを示せ。
$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$
必要ならば$0\lt x \lt 1$のとき
$\displaystyle \lim_{n\to\infty} nx^n=0$であることを
証明なしで使ってもよい。
(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る
$\boxed{3}$
$0\lt p\lt 1$とする。
表が出る確率が$p$、裏が出る確率が$1-p$である
$1$枚のコインを使って次のゲームを行う。
・ゲームの開始時点で点数は$0$点
・コインを投げ続け、表が出るごとに$1$点加算し、
裏が出たときは点数はそのまま
・$2$回続けて裏が出たらゲームは終了。
$0$以上の整数$n$に対し、ゲームが終わったときに
$n$点となっている確率を$Q_n$とする。
(1)$Q_1,Q_2$を$p$を用いて表せ。
(2)$Q_2$を$n$と$p$を用いて表せ。
(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が
成り立つことを示せ。
$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$
必要ならば$0\lt x \lt 1$のとき
$\displaystyle \lim_{n\to\infty} nx^n=0$であることを
証明なしで使ってもよい。
(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
福田のおもしろ数学494〜3乗根の付いた数の大小比較

単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
大小を比較せよ。
$\sqrt[3]{4(2197+2025)}$
VS
$13+\sqrt[3]{2025}$
この動画を見る
大小を比較せよ。
$\sqrt[3]{4(2197+2025)}$
VS
$13+\sqrt[3]{2025}$
福田の数学〜東京科学大学(旧・東京工業大学)2025理系第2問〜ねじれの位置にある直線上の2点ずつでできる四面体の体積の最大最小

単元:
#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$
空間の点$(0,0,1)$を通り
$(1,-1,0)$を方向ベクトルとする
直線を$\ell$とし、点$(1,0,3)$を通り$(0,1,-2)$を
方向ベクトルとする直線を$m$とする。
(1)$P$を$\ell$上の点とし、$Q$を$m$上の点とする。
また直線$PQ$は直線$\ell$と直線$m$に垂線であるとする。
このとき$P$と$Q$の座標、
および線分$PQ$の長さを求めよ。
(2)$\ell$上に$2$点
$A=(t,-t,1),$
$B(2+t+\sin t,-2-t-\sin t,1)$
があり、$m$上に$2$点
$C=(1,t,3,-2t),$
$D=(1,2+t<\cos t,-1-2t-2\cos t)$
があるとする。ただし、$y$は実数とする。
四面体$ABCD$の体積を$V(t)$とする。
$V(0)$を求めよ。
(3)$t$が$t\geqq 0$を動くとき、
$V(t)$の最大値と最小値を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る
$\boxed{2}$
空間の点$(0,0,1)$を通り
$(1,-1,0)$を方向ベクトルとする
直線を$\ell$とし、点$(1,0,3)$を通り$(0,1,-2)$を
方向ベクトルとする直線を$m$とする。
(1)$P$を$\ell$上の点とし、$Q$を$m$上の点とする。
また直線$PQ$は直線$\ell$と直線$m$に垂線であるとする。
このとき$P$と$Q$の座標、
および線分$PQ$の長さを求めよ。
(2)$\ell$上に$2$点
$A=(t,-t,1),$
$B(2+t+\sin t,-2-t-\sin t,1)$
があり、$m$上に$2$点
$C=(1,t,3,-2t),$
$D=(1,2+t<\cos t,-1-2t-2\cos t)$
があるとする。ただし、$y$は実数とする。
四面体$ABCD$の体積を$V(t)$とする。
$V(0)$を求めよ。
(3)$t$が$t\geqq 0$を動くとき、
$V(t)$の最大値と最小値を求めよ。
$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
田のおもしろ数学493〜2つの方程式の解が非負実数である条件

単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$2$つの方程式
$3x^2-12x-2a=0$
$x^3+ax^2+bx-8=0$
の解がすべて非負実数であるような
実数の組$(a,b)$をすべて求めよ。
この動画を見る
$2$つの方程式
$3x^2-12x-2a=0$
$x^3+ax^2+bx-8=0$
の解がすべて非負実数であるような
実数の組$(a,b)$をすべて求めよ。
福田の数学〜一橋大学2025文系第5問〜確率漸化式と条件付き確率

単元:
#数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$
$5$点$A,B,C,D$が
下図のように線分で結ばれている。
点$P_1,P_2,P_3,\cdots $を次のように定めていく。
$P_1$を$A$とする。
正の整数$n$に対して、$P_n$を端点とする線分を
ひとつ無作為にえらび、その線分の$P_n$とは
異なる端点$P_{n+1}$とする。
(1)$P_n$が$A$または$B$である確率$p_n$を求めよ。
(2)$P_n$が$A$または$B$であるとき、
$k=1,2,\cdots ,n$のいずれに対しても$P_k=E$とは
ならない条件付き確率$q_n$を求めよ。
図は動画内参照
$2025$年一橋大学文系過去問題
この動画を見る
$\boxed{5}$
$5$点$A,B,C,D$が
下図のように線分で結ばれている。
点$P_1,P_2,P_3,\cdots $を次のように定めていく。
$P_1$を$A$とする。
正の整数$n$に対して、$P_n$を端点とする線分を
ひとつ無作為にえらび、その線分の$P_n$とは
異なる端点$P_{n+1}$とする。
(1)$P_n$が$A$または$B$である確率$p_n$を求めよ。
(2)$P_n$が$A$または$B$であるとき、
$k=1,2,\cdots ,n$のいずれに対しても$P_k=E$とは
ならない条件付き確率$q_n$を求めよ。
図は動画内参照
$2025$年一橋大学文系過去問題
福田のおもしろ数学492〜不定方程式の整数解

単元:
#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$(x+y)^x-x^y$
を満たす正の整数$x,y$をすべて求めて下さい。
この動画を見る
$(x+y)^x-x^y$
を満たす正の整数$x,y$をすべて求めて下さい。
福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{4}$
原点を$O$とする座標空間内の
$2$点$A(0,3,-5),B(5,-2,10)$に対して
$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$
で定まる点$P$が存在する範囲を$D$とする。
$D$に含まれる半径$10\sqrt2$の円のうち、
その中心と原点との距離が最小となるものを
$C$とする。
円$C$の中心の座標を求めよ。
$2025$年一橋大学文系過去問題
この動画を見る
$\boxed{4}$
原点を$O$とする座標空間内の
$2$点$A(0,3,-5),B(5,-2,10)$に対して
$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$
で定まる点$P$が存在する範囲を$D$とする。
$D$に含まれる半径$10\sqrt2$の円のうち、
その中心と原点との距離が最小となるものを
$C$とする。
円$C$の中心の座標を求めよ。
$2025$年一橋大学文系過去問題
福田のおもしろ数学491〜三角関数の連立方程式

単元:
#連立方程式#数Ⅱ#三角関数#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$x,y$は実数であり
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin x+\cos y=1 \\
\cos x+\sin y=-1
\end{array}
\right.
\end{eqnarray}$
のとき、$\cos 2x=\cos 2y$となることを
証明せよ。
この動画を見る
$x,y$は実数であり
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin x+\cos y=1 \\
\cos x+\sin y=-1
\end{array}
\right.
\end{eqnarray}$
のとき、$\cos 2x=\cos 2y$となることを
証明せよ。
