福田次郎 - 質問解決D.B.(データベース) - Page 6

福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

静岡県の公立高校の数学教員として長年受験指導あり。
藤枝東高校8年、静岡市立高校8年、静岡高校12年。特に静岡高校では9年間にわたり進路指導主任として大学側とも関係を構築。
その経験を活かして数学の動画を日々配信中!
数学関係のアプリも多数手がけています。
過去問を中心に受験対策数学動画多数。

福田のおもしろ数学118〜幾何の証明〜垂心に関する命題の証明

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
動画の三角形ABCにおいて、点Hは三角形ABCの垂心、Mは辺BCの中点である。
DE$\bot$MHのとき、DH=EHを証明せよ。
この動画を見る 

福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
この動画を見る 

福田のおもしろ数学117〜小学生の常識なのか?0.57という定数は大切〜雙葉中学の問題

アイキャッチ画像
単元: #算数(中学受験)#平面図形#平面図形その他
指導講師: 福田次郎
問題文全文(内容文):
動画の図形の緑色の領域の面積を求めよ。
この動画を見る 

福田の数学〜東北大学2024年理系第4問〜2つの球面の交わりの円

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $xyz$空間において、点$P_1$(3,-1,1)を中心とした半径$\sqrt 5$の球面$S_1$と、点$P_2$(5,0,-1)を中心とし半径が$\sqrt 2$の球面$S_2$を考える。
(1)線分$P_1P_2$の長さを求めよ。
(2)$S_1$と$S_2$が交わりをもつことを示せ。この交わりは円となる。この円をCとし、その中心を$P_3$とする。Cの半径および中心$P_3$の座標を求めよ。
(3)(2)の円Cに対し、Cを含む平面をHとする。$xy$平面とHの両方に平行で、大きさが1のベクトルを全て求めよ。
(4)点Qが(2)の円C上を動くとき、Qと$xy$平面の距離dの最大値を求めよ。
また、dの最大値を与える点Qの座標を求めよ。
この動画を見る 

福田のおもしろ数学116〜円の内部の点(a,b)に対してax+by=r^2はどんな直線を表しているか

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ の内部の点($a$,$b$)に対して直線$ax$+$by$=$r^2$ はどんな直線か。ただし、($a$,$b$)$\ne$(0,0)とする。
この動画を見る 

福田の数学〜東北大学2024年理系第3問〜確率漸化式と複素数平面の融合

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$ を2以上の整数とする。それぞれ $A$, $A$, $B$ と書かれた $3$ 枚のカードから無作為に $1$ 枚抜き出し、カードをもとに戻す試行を考える。この試行を $n$ 回繰り返し、抜き出したカードの文字を順に左から右に並べ、$n$ 文字の文字列を作る。作った文字列内に $AAA$ の並びがある場合は 不可 とする。また、作った文字列内に $BB$ の並びがある場合も 不可 とする。これらの場合以外は 可 とする。

例えば $n = 6$ のとき、文字列 $AAAABA$ や $ABBBAA$ や $ABBABB$ や $BBBAAA$ などは 不可 で、文字列 $BABAAB$ や $BABABA$ などは 可 である。
作った文字列が 可 でかつ右端の $2$ 文字が $AA$ である確率を $p_n$、作った文字列が 可 でかつ右端の $2$ 文字が $BA$ である確率を $q_n$、作った文字列が 可 でかつ右端の文字が $B$ である確率を $r_n$ とそれぞれおく。

(1) $p_2$, $q_2$, $r_2$ をそれぞれ求めよ。また、$p_{n+1}$, $q_{n+1}$, $r_{n+1}$ を $p_n$, $q_n$, $r_n$ を用いてそれぞれ表せ。
(2)$p_n$+$2q_n$+$2r_n$を$n$を用いて表せ。
(3)$p_n$+$iq_n$-$(1+i)r_n$を$n$を用いて表せ。ただし、$i$は虚数単位である。
(4)$p_n$=$r_n$ を満たすための、$n$の必要十分条件を求めよ。
この動画を見る 

福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上に円外の点($a$,$b$)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式は$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る 

福田の数学〜東北大学2024年理系第2問〜対数不等式の証明と自然数解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
この動画を見る 

福田のおもしろ数学114〜円の接線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
円$x^2$+$y^2$=$r^2$ 上の点($a$,$b$)における接線の方程式は
$ax$+$by$=$r^2$ であることを証明せよ。
この動画を見る 

福田の数学〜東北大学2024年理系第1問〜放物線と接線と面積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $a$を正の実数とし、$f(x)$=$x^2$-$2ax$+$4a^2$ とする。Oを原点とする$xy$平面上の放物線C:$y$=$f(x)$の頂点をAとする。直線OAとCの交点のうちAと異なるものをP($p$,$f(p)$)とし、OからCへ引いた接線の接点をQ($q$,$f(q)$)とする。ただし、$q$>0 とする。
(1)$p$,$q$の値を$a$を用いて表せ。また、$p$>$q$であることを示せ。
(2)放物線Cの$q$≦$x$≦$p$の部分、線分OP、および線分OQで囲まれた図形の面積をSとおく。Sを$a$を用いて表せ。
(3)(2)のSに対し、S=$\frac{2}{3}$ となるときの$a$の値を求めよ。
この動画を見る 

福田のおもしろ数学113〜1分チャレンジ〜連立方程式を解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
この動画を見る 

福田の数学〜北海道大学2024年文系第4問〜正八面体のサイコロと反復試行の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面とよぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を2回行ったとき、持ち点が1である確率を求めよ。
(2)この試行を4回行ったとき、持ち点が10以下である確率を求めよ。
この動画を見る 

福田のおもしろ数学112〜多変数の式の最大最小

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: 福田次郎
問題文全文(内容文):
実数$x$,$y$,$z$が0≦$x$≦1, 0≦$y$≦1, 2≦$z$≦3 を満たして変わるとき、$\displaystyle\frac{z-y}{z-x}$ の最大値、最小値を求めよ。
この動画を見る 

福田の数学〜北海道大学2024年文系第3問〜3次関数のグラフと面積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $a$を0でない実数とする。$C$を$y$=$-x^3$+$x^2$ で表される曲線、$l$を$y$=$a$ で表される直線とし、$C$と$l$は共有点をちょうど2つもつとする。
(1)$a$の値を求めよ。
(2)$C$と$l$の共有点の$x$座標をすべて求めよ。
(3)$C$と$l$で囲まれた図形の面積を求めよ。
この動画を見る 

福田のおもしろ数学111〜論証力をチェックしよう〜3変数の基本対称式の性質

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
実数$a$,$b$,$c$が$a$+$b$+$c$>0, $ab$+$bc$+$ca$>0, $abc$>0 を満たすとき、$a$>0, $b$>0, $c$>0 であることを証明せよ。
この動画を見る 

福田の数学〜北海道大学2024年文系第2問〜漸化式を解く

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 次の条件によって定められる数列$\left\{a_n\right\}$について考える。
$a_1$=3, $a_{n+1}$=$3a_n$-$\displaystyle\frac{3^{n+1}}{n(n+1)}$
(1)$b_n$=$\frac{a_n}{3^n}$ とおくとき、$b_{n+1}$を$b_n$と$n$の式で表せ。
(2)数列$\left\{a_n\right\}$ の一般項を求めよ。
この動画を見る 

福田のおもしろ数学110〜豊島岡女子中学の問題〜面積を求める難問

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 福田次郎
問題文全文(内容文):
図のような(※動画参照)直角三角形ABCと正方形DEFGがあります。辺BCの長さと正方形の一辺の長さが等しく、辺ACの長さと正方形の一辺の長さの和が4 cmであるとき、2つの図形の面積の和は何$\textrm{cm}^2$か。
この動画を見る 

福田の数学〜北海道大学2024年文系第1問〜約数の個数と総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ 次の問いに答えよ。
(1)自然数$m$, $n$について、$2^m・3^n$の正の約数の個数を求めよ。
(2)6912の正の約数のうち、12で割り切れないものの総和を求めよ。
この動画を見る 

福田のおもしろ数学109〜桜蔭中学の問題〜正三角形の回転移動で通過する範囲の面積

アイキャッチ画像
単元: #算数(中学受験)#平面図形#図形の移動
指導講師: 福田次郎
問題文全文(内容文):
一辺が1の正三角形ABCが図のように(※動画参照)一辺が3の正方形PQRTの内部にあります。
この正三角形を元の位置に戻るまで、矢印の向きにすべらないように回転させながら移動させます。
正三角形ABCの面積をSとするとき、通過範囲の面積をSを用いて表しなさい。
この動画を見る 

福田の数学〜北海道大学2024年理系第5問〜対数関数の増減凹凸と面積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ 関数$f(x)$=$x\log(x+2)$+1 ($x$>-2)
を考える。$y$=$f(x)$で表される曲線を$C$とする。$C$の接線のうち傾きが正で原点を通るものを$l$とする。ただし$\log t$は$t$の自然対数である。
(1)直線$l$の方程式を求めよ。
(2)曲線$C$は下に凸であることを証明せよ。
(3)$C$と$l$および$y$軸で囲まれた部分の面積を求めよ。
この動画を見る 

福田のおもしろ数学108〜虚数単位iは数直線上に存在するか

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
虚数単位$i$が数直線上のどこにもないことを証明せよ。
この動画を見る 

福田の数学〜北海道大学2024年理系第4問〜三角形の内心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 三角形OABが、|$\overrightarrow{OA}$|=3, |$\overrightarrow{AB}$|=5, $\overrightarrow{OA}・\overrightarrow{OB}$=10 を満たしているとする。
三角形OABの内接円の中心をIとし、この内接円と辺OAの接点をHとする。
(1)辺OBの長さを求めよ。
(2)$\overrightarrow{OI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
(3)$\overrightarrow{HI}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
この動画を見る 

福田のおもしろ数学107〜京都大学の有名問題〜車両の色塗り

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$両編成($n$≧2)に各車両に赤、青、黄の3色のいずれかを塗る。隣り合った車両の少なくとも一方が赤になるような塗り方は何通りあるか。
この動画を見る 

福田の数学〜北海道大学2024年理系第3問〜関数方程式の解

アイキャッチ画像
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 269

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/taxonomy-teacher.php on line 270
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問いに答えよ。
(1)$\alpha$ を実数とする。次のように定められた数列$\left\{a_n\right\}$ の一般項を求めよ。
$a_1$=$\alpha$, $a_{n+1}$=$\frac{1}{2}a_n$+1 ($n$=1,2,3,...)
(2)関数$f_1(x)$, $f_2(x)$, $f_3(x)$,... を次の関係式で定める。
$f_1(x)$=$3x$
$f_{n+1}(x)$=$(n+2)x^{n+1}$+$\displaystyle\left(\int_0^1f_n(t)dt\right)x$ ($n$=1,2,3,...)
関数$f_n(x)$を$x$と$n$の式で表せ。
この動画を見る 

福田のおもしろ数学106〜折り紙の問題〜折ってから一部を切り取り元にもどした図形

アイキャッチ画像
単元: #算数(中学受験)#平面図形#平面図形その他
指導講師: 福田次郎
問題文全文(内容文):
動画のように折り紙を折ったのち、紙を広げたときの図形の名称を答えよ。
この動画を見る 

福田の数学〜北海道大学2024年理系第2問〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面と呼ぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を$n$回行ったとき、持ち点が2以下である確率を求めよ。ただし、$n$は2以上の自然数とする。
(2)この試行を4回行って持ち点が10以上であった時に、さらにこの試行を2回行って持ち点が17以上である条件付き確率を求めよ。
この動画を見る 

福田のおもしろ数学105〜10秒チャレンジ〜円弧と円弧で囲まれた図形の面積

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 福田次郎
問題文全文(内容文):
動画の図における、緑色の領域の面積を求めよ。
この動画を見る 

福田の数学〜北海道大学2024年理系第1問〜点の一致条件と軌跡

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $t$を実数とし、$xy$平面上の点P($\cos 2t$, $\cos t$)および点Q($\sin t$, $\sin 2t$)を考える。
(1)点Pと点Qが一致するような$t$の値をすべて求めよ。
(2)$t$が0<$t$<$2\pi$ の範囲で変化するとき、点Pの軌跡を$xy$平面上に図示せよ。
ただし、$x$軸、$y$軸との共有点がある場合は、それらの座標を求め、図中に記せ。
この動画を見る 

福田のおもしろ数学104〜麻布中学の算数〜三角形と四角形の面積の差

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 福田次郎
問題文全文(内容文):
$\triangle$BCQと四角形APQRの面積の差を求めよ。(※動画参照)
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第5問〜散布図と相関係数と分散

アイキャッチ画像
単元: #データの分析#データの分析#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 下図(※動画参照)は、あるクラスの40人の生徒の数学と理科の試験得点の散布図である。
データ点の近くの数値はそのデータ点の生徒の出席番号である。
(1)数学と理科の合計得点が最も高い生徒の出席番号は$\boxed{\ \ ヒ\ \ }$である。また、数学と理科の得点差の絶対値が最も大きい生徒の出席番号は$\boxed{\ \ フ\ \ }$である。
(2)数学と理科それぞれの得点の平均値を$\bar{x}$, $\bar{y}$、標準偏差を$s_x$, $s_y$、数学と理科の得点の共分散を$s_{xy}$と表すと、これらの数値は以下であった。
$\bar{x}$=67.7, $\bar{y}$=70.9, $s_x$=14.9, $s_y$=11.5, $s_{xy}$=115.7
数学の得点と理科の得点の相関係数は$\boxed{\ \ ヘ\ \ }$である。なお、答えは小数第3位を四捨五入し、小数第2位まで求めなさい。
(3)各生徒の数学の得点を$x_1$, $x_2$, ..., $x_{40}$、理科の得点を$y_1$, $y_2$, ..., $y_{40}$で表す。
数学と理科の合計得点$x_1$+$y_1$, $x_2$+$y_2$, ..., $x_{40}$+$y_{40}$の平均値は$\bar{x}$, $\bar{y}$を用いると$\boxed{\ \ ホ\ \ }$と表せる。合計得点の分散は、
$\displaystyle\frac{1}{40}\sum_{i=1}^{40}\left(x_i+y_i-\boxed{\ ホ\ }\right)^2$
であるから、これを式変形すると、合計得点の分散は、$s_x$, $s_y$, $s_{xy}$を用いて$\boxed{\ \ マ\ \ }$と表せる。これらの式に(2)で与えられた数値を入れて計算すると、数学と理科の合計得点の平均値は$\boxed{\ \ ミ\ \ }$、分散は$\boxed{\ \ ム\ \ }$である。なお、答えは小数第2位を四捨五入し、小数第1位まで求めなさい。
この動画を見る 
PAGE TOP